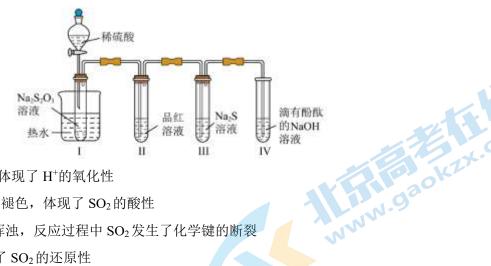
2024 北京房山高三(上)期末

化 学

本试卷共 10 页, 共 100 分。考试时长 90 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。 可能用到的相对原子质量: H1 C12 N14 O16 F19 Na 23 Al 27 Ag 108 考试结束后,将答题卡交回,试卷自行保存。

第一部分(选择题,共42分)

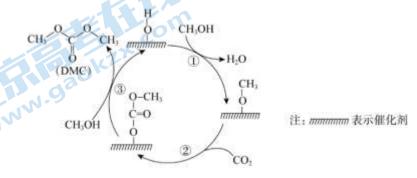
每小题只有一个选项符合题意。共14个小题,每小题3分,共42分。


1. 合理使用食品添加剂可以防止食品变质,改善或丰富食物的色、香、味等。下表列出了某些食品添加剂, 其中物质分类不正确的是

选项	A	В	С	D	
食品添加剂	抗结剂	防腐剂	调味剂	膨松剂	
主要成分	二氧化硅	对羟基苯甲酸丙酯	醋酸	碳酸氢钠	
物质分类	氧化物	烃	酸	抽	

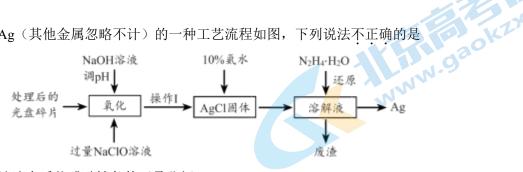
- 2. 下列化学用语表示正确的是
 - A. 基态 Fe²⁺的价电子轨道表示式为: ↑↓ ↑ ↑
 - B. N₂的电子式: N::N
 - C. NH₃分子的 VSEPR 模型:
 - D. K+的结构示意图: (-18)288
- 3. 物质的性质决定用途,下列两者对应关系不正确的是
 - A. 小苏打受热易分解,可用于治疗胃酸过多
 - B. 氧化钙易吸水,可用作干燥剂
 - C. 维生素 C 具有还原性,可用作食品抗氧化剂
 - D. 过氧化钠能与二氧化碳反应生成氧气,可作潜水艇中的供氧剂
- 4. 能证明 Na₂SO₃溶液中存在 SO²→H₂O → HSO³→OH·水解平衡的事实是
 - A. 滴入酚酞溶液后变红,再加入H₂SO₄溶液后红色褪去
 - B. 滴入酚酞溶液后变红,再加入氯水后红色褪去
 - C. 滴入酚酞溶液后变红,再加入 BaCl₂溶液后产生沉淀且红色褪去
 - D. 滴入酚酞溶液后变红,再加入 NaHSO4溶液后红色褪去
- 5. 下列实验的颜色变化中,与氧化还原无关的是

- A. 将 2~3 滴饱和 FeCl3 溶液滴入到沸腾的蒸馏水中,液体变成红褐色
- B. 将氯气通入 KI 溶液中,充分反应后加入 CCla,振荡静置,溶液分层,下层呈紫色 WWW. 9aokzx.
- C. 将 SO_2 气体通入酸性高锰酸钾溶液中,溶液紫色褪去
- D. 将铁粉加入到 FeCl3 溶液中,溶液颜色由黄色变为浅绿色
- 6. 水是生命之源,下列改善水质的相关事实与方程式不相符的是
 - A. 用 Na₂S 溶液除去废水中的 Hg²⁺: S²⁻+Hg²⁺===HgS↓
 - B. 用食醋处理水垢中的 $Mg(OH)_2$: $2H^+ + Mg(OH)_2 = Mg^{2^+} + 2H_2O$
 - C. 用明矾净化水: $A1^{3^+}+3H_2O \Longrightarrow AI(OH)_3$ (胶体) $+3H^+$
 - D. 用碳酸钠溶液处理水垢中的硫酸钙: CO_3^2 (aq) $+ CaSO_4$ (s) \longrightarrow $CaCO_3$ (s) $+ SO_4^2$ (aq)
- 7. 设 N_A 为阿伏加德罗常数,下列说法正确的是
 - A. 2.3 g 钠分别完全转化为 Na₂O 和 Na₂O₂ 时转移的电子数相同
 - B. 标准状况下, $11.2 LO_2$ 和 N_2 的混合气体中所含分子数约为 N_A
 - C. 相同物质的量浓度的 NH_4Cl 溶液和 $NH_3·H_2O$ 中的 $c(NH_4)$ 相同
 - D. 一定条件下,1 $mol N_2$ 与 3 $mol H_2$ 反应生成的 NH_3 分子数为 2 N_A
- 8. 兴趣小组按如下装置进行含硫物质的转化研究(夹持装置已略去,气密性已检验),将稀硫酸全部加入I 中的试管,关闭活塞。I 中试管内发生的反应是: $S_2O_2^{\circ}+2H^+\longrightarrow S_1+SO_2\uparrow+H_2O_2$,下列说法正确的是


- A. I中试管内的反应,体现了H⁺的氧化性
- B. II中试管内品红溶液褪色,体现了 SO₂的酸性
- C. III中试管内中出现浑浊,反应过程中 SO2 发生了化学键的断裂
- D. IV中红色褪去体现了 SO₂ 的还原性
- 9. 完成下图所示实验,装置或试剂不正确的是

实验室制 Cl ₂	探究影响化学反应速率的 因素	检验溴乙烷发生消去反应 的产物——乙烯	证明酸性强弱: 盐酸>碳酸>硅酸	
NO.	2 ml 0.5 mol·L 2 ml 3 ml	e manaman	Na ₂ CO ₂ E & Na ₂ SiO ₂ & ik	
A	В	С	D	

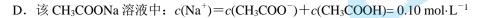
10. 聚乳酸是一种新型的生物可降解高分子材料, 其合成路线如下:

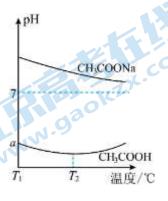

下列说法不正确的是

- A. 聚乳酸的重复单元中有两种官能团
- C. 1 mol 乳酸与足量的 Na 反应生成 1 mol H₂ D. 聚乳酸中存在手性碳原子
- 11. DMC 被广泛应用与生产聚酯、合成医药及农药。科研人员提出催化合成 DMC 需经历三步反应,示意 图如下:

下列说法正确的是

- A. ①、②、③中均有 O—H 的断裂
- B. 生成 DMC 总反应为: 2CH₃OH + CO₂ →
- C. 该催化剂可有效提高反应物的平衡转化率
- D. DMC 与过量 NaOH 溶液反应生成 CO² 和甲醇
- 12. 从光盘中提取 Ag(其他金属忽略不计)的一种工艺流程如图,下列说法不正确的是


已知: NaClO 溶液在受热或酸性条件下易分解

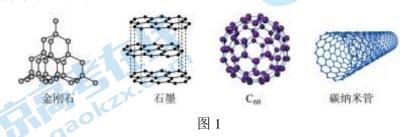

- A. "氧化"过程若在加强热和强酸性条件下进行,可提高氧化速率
- B. "氧化"过程还生成 O₂,则可能的化学反应为: 4Ag+4NaClO+2H₂O=4AgCl+4NaOH+O₂↑
- C. "操作I"是过滤
- D. "还原"过程中 N₂H₄·H₂O 转化为无害气体 N₂, 则理论上消耗 1 mol N₂H₄·H₂O 可提取 432 g Ag

- 13. 实验测得浓度均为 $0.10\,\mathrm{mol\cdot L^{-1}}$ 的 $\mathrm{CH_3COONa}$ 溶液和 $\mathrm{CH_3COOH}$ 溶液的 pH 随 温度的变化情况如图所示。下列说法不正确的是
 - A. CH₃COONa 溶液呈碱性的原因是:

 $CH_3COO^- + H_2O \Longrightarrow CH_3COOH + OH^-$

- B. 升高温度, CH_3COONa 溶液中 $c(OH^-)$ 减小, $c(H^+)$ 增大,pH 减小
- C. T₂℃后, CH₃COOH 溶液的 pH 随温度的升高而增大的原因可能是由于 CH₃COOH 的挥发

14. 某化学小组利用手持技术探究铁钉在4种溶液中的吸氧腐蚀,下表为得到的相关实验数据。


实验装置	编号	浸泡液	рН	氧气体积分数随时间的变化
数据采集器	1	1.0 mol·L ⁻¹ NH ₄ Cl	5	21
	29	0.5 mol·L ⁻¹ (NH ₄) ₂ SO ₄	5	炎20
	3	1.0 mol·L ^{−1} NaCl	7	₩ NaCl ★18 NH ₄ Cl
	4	0.5 mol·L ⁻¹ Na ₂ SO ₄	7	踩170 60 120 180 240 300 时间/min

下列说法不正确的是

- A. 铁钉吸氧腐蚀的负极反应为 $Fe-2e^{-}$ Fe^{2+}
- B. 由实验可知, Cl⁻、NH⁺能加快铁的吸氧腐蚀速率
- C. 曲线先陡后平可能是由于生成的氢氧化物增加,阻碍了反应继续进行
- D. 由实验可知,NHt 水解产生的H⁺能减少难溶氢氧化物的生成,酸性越强吸氧腐蚀的速率越大

第二部分(非选择题,共58分)

- 15. (12 分)将钴酞菁和三氯化铝复合嵌接在碳纳米管上,制得一种高效<mark>催</mark>化还原二氧化碳的催化剂。回答下列问题:
 - (1) 碳的几种单质如图 1 所示。

- ①几种碳的单质中属于共价晶体的是___。
- ②C60间的作用力是。
- ③基态碳原子价层电子排布式为___。
- (2) 钴酞菁的分子结构如图 2 所示。
- ①比较 C 原子和 N 原子的电负性大小,并从原子结构的角度说明理由
- ②钴酞菁分子中能形成配位键的原因是___。

(3) 气态 AlCl₃通常以二聚体 Al₂Cl₆的形式存在,其空间结构如图 3 所示。AlF₃结构属立方晶系,晶胞如图 4 所示。

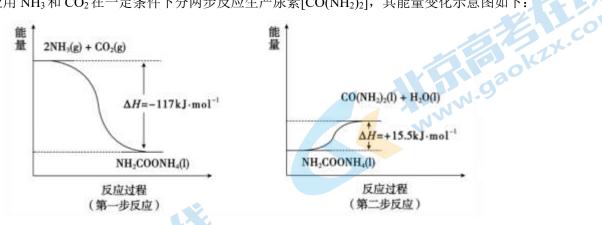
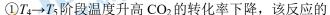
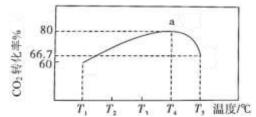
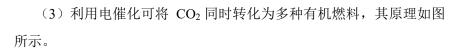



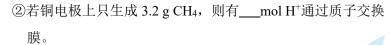
图 3 Al₂Cl₆的分子结构

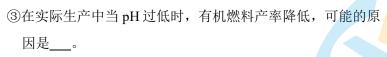

图 4 AlF₃的晶体结构

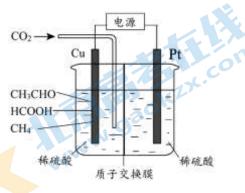
- ①二聚体中的 Al 轨道杂化类型为___。
- ②AlF₃的熔点为 1090℃,远高于 AlCl₃的熔点 192℃,原因是。
- ③AIF3晶体距离 F-最近的阳离子有___个。
- ④AlF₃的晶胞形状为正方体,边长为anm,该晶体密度为 $_{g}\cdot cm^{-3}$ 。(列出计算式,阿伏加德罗常数用 N_{A} 表示,1nm = $10^{-7}cm$)
 - 16. (12分) CO₂的转化有助于实现碳循环和碳减排。
 - (1) 工业用 NH₃和 CO₂在一定条件下分两步反应生产尿素[CO(NH₂)₂],其能量变化示意图如下:

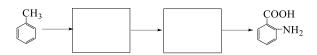

合成尿素总反应的热化学方程式是


(2) 近年科学家提出"绿色自由"构想。CO₂ 与 H₂ 在 300℃、2×10⁵Pa 的条件下可生成甲醇,不同温度下,在 1L 恒容密闭容器中充入 2 mol CO₂和 5 mol H₂,相同时间内测得 CO₂的转化率随温度的变化如图所示:

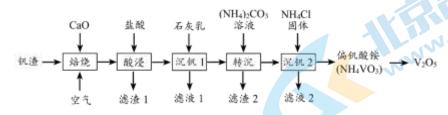

 $\triangle H_{0}$ (填">"或"<"),理由是___。


②计算温度为 T_4 时 a 点的平衡常数为。





www.gaokz


17. (13分) 氯氮平是治疗精神类疾病的一种药物,下图为合成药物氯氮平的一种路线。

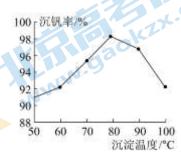
- (1) B的含氧官能团名称是___。
- (2) B→C 的反应方程式是。
- (3) 试剂 a 的分子式为 $C_6H_3Cl_2NO_2$,则其结构简式为___。
- (4) F 分子中核磁共振氢谱只有一组峰,则 F→G 的反应方程式为
- (5) I 的结构简式是。
- (6) 化合物 J 成环得到氯氮平的过程先后发生了加成反应和___反应。
- (7) $C(C_8H_9NO_2)$ 的同分异构体有多种,写出满足下列条件的同分异构体的结构简式。
 - ① 该芳香化合物可发生水解,水解产物可发生银镜反应
 - ② 苯环上有两个取代基, 其中一个为-NH2
 - ③ 苯环上的一氯取代物有两种
- (8) 已知-NH₂ 易被氧化,甲基可使苯环邻位上的 H 活化,羧基可使苯环的间位上的 H 活化。写出由

CH₃ COOH 合成 NH₂的中间产物结构简式。

18. (11分)某钒渣主要成分为 V_2O_3 (含有少量 Al_2O_3 、CaO),以其为原料生产 V_2O_5 的工艺如下图:

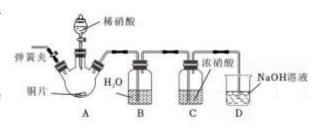
己知:

i. 钒酸(H₃VO₄)是强酸, NH₄VO₃(偏钒酸铵)难溶于水; +5 价钒在溶液中的主要存在形式与溶液 pH 的关系如表所示。

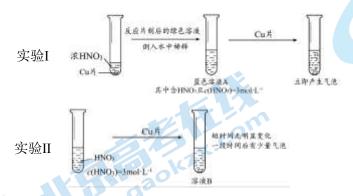

pH	4~6	6~8	8~10	10~12
主要离子	VO_2^+	VO_3^-	$V_2O_7^{4-}$	VO_4^{3-}

ii. 室温下, K_{sp} (CaCO₃)=m, K_{sp} [Ca₃(VO₄)₂]=n。

iii. Al³⁺在溶液 pH = 3.3 时开始沉淀,溶液 pH=4.7 时沉淀完全。


请回答以下问题:

- (1)"酸浸"前需将块状固体粉碎,其目的是___; 焙烧过程中 V2O3 生成 Ca(VO3)2 的化学方程式为___。
- (2) 已知 $Ca(VO_3)_2$ 难溶于水,可溶于盐酸。若"酸浸"时溶液的 pH=5,则 $Ca(VO_3)_2$ 溶于盐酸的离子方程式为___。
- (3) "转沉"时,发生反应 Ca₃(VO₄)₂(s)+3CO₃² (aq) → 2VO₄^{3−} (aq) +3CaCO₃(s), 该反应的平衡常数 *K*= (用含 m、n 的代数式表示)。
- (4) "沉钒 2"的沉钒率随温度的变化如右图所示,温度高于 80℃沉钒率下降的原因是___。
- (5) 产品纯度测定:将 m g 产品(V_2O_5)溶于足量稀硫酸配成 100 mL(VO_2) $_2SO_4$ 溶液。取 20.00 mL 该溶液于锥形瓶中,用 a mol· $L^{-1}H_2C_2O_4$ 标准溶液进行滴定,经过三次滴定,达到滴定终点时平均消耗标准溶液的体积为 20.00 mL。


①完成下列滴定过程的离子方程式:

- ②产品的纯度为___(用质量分数表示, $M(V_2O_5)=182 \text{ g·mol}^{-1}$)。
- 19. (10 分) 某学习小组对 Cu 与 HNO₃ 的反应进行了研究。
 - (1)铜与稀硝酸反应的离子方程式为___。
 - (2) 利用如图装置完成 Cu 与 HNO3 制取氮氧化物的

反应。实验过程中可观察到装置B中液面上方为无色气体,C中液面上方为红棕色气体。

- ①为排尽整套装置内的空气,先打开弹簧夹,通入___(填化学式),一段时间后关闭弹簧夹。
- ②C中液面上方为红棕色气体,其原因是___(用化学方程式表示)。
- (3) 学习小组在做铜与硝酸反应的实验时观察到了以下现象:实验I中蓝色溶液 A 遇铜片立即产生气泡,而相同条件下实验II中 $3 \text{ mol} \cdot \text{L}^{-1}$ 硝酸遇铜片短时间内无明显变化,一段时间后才有少量气泡产生。实验操作如下:

分析蓝色溶液 A 的成分后, 学习小组探究蓝色溶液 A 与铜片能够立即发生反应的原因。

WWW.9aokz

①假设1: (填化学式)对该反应有催化作用。

实验验证: 向 $3 \text{ mol } L^{-1}$ 硝酸中加入少量硝酸铜固体,溶液呈蓝色,放入铜片,无明显变化。

结论:假设1不成立。

②假设 2: NO₂ 对该反应有催化作用。

向 A 中鼓入 N2 数分钟得溶液 C,相同条件下,铜片与 A、C 溶液的反应速率:

v(A)_v(C)(填">""=""<")。实验证明假设2成立。

③经检验,蓝色溶液 A 中还含有少量亚硝酸 HNO2。

设计实验证明 HNO2 也对该反应有催化作用。操作和预期的现象是:

向含有铜片的溶液 B 中___。

实验总结: NO2和 HNO2对铜与硝酸的反应都有催化作用。

(4) 请推测 Cu 与浓硝酸反应中 NO2 和 HNO2 参与的可能的催化过程:

(1)Cu+2NO₂+2H⁺=Cu²⁺+2HNO₂ (2) (2)

参考答案

第一部分 选择题

(每小题只有1个选项符合题意,共14个小题,每小题3分,共42分)

题号	1	2	3	4	5	6	7.9
答案	В	A	A	С	A	В	A
题号	8	9	10	11	12	13	14
答案	С	D	A	D	A	В	D

第二部分 非选择题 (共58分)

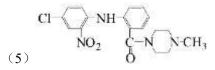
15. (12分)

- (1) ①金刚石(1分)
 - ②范德华力或分子间作用力(1分)
 - ③ $2s^22p^2$ (1分)
- (2) ① C < N 理由: C 和 N 电子层数相同,核电荷数 C < N,原子半径 C > N,核对外层电子的吸引力 C < N,电负性 C < N (2分)
 - ② Co 可提供空轨道, N 可提供孤电子对 (2分)
- (3) ① sp^3 (1分)
 - ② AIF₃ 为离子晶体, AICl₃ 为分子晶体, 离子键强度远大于范德华力(2分)
 - ③2(1分)
 - ④ $84 \times 10^{21}/a^3 \times N_A$ (1分)

16. (12分)

- (1) $2NH_3(g)+CO_2(g)=CO(NH_2)_2(l)+H_2O(l) \Delta H = -101.5 \text{ kJ} \cdot \text{mol}^{-1} (2 \%)$
- (2) ① < (1分) 理由: T_4 时刻达到平衡后,其他条件不变,温度升高 CO_2 转化率降低,说明平衡 逆向移动,该反应为放热反应。(2分)
 - ②800 (1分)
- (3) ① $2CO_2+10e^-+10H^+$ == $CH_3CHO+3H_2O$ (2分)
 - ② 1.6 (2分)
 - ③ $c(H^+)$ 增大,在铜电极发生 $2H^++2e^- = H_2 \uparrow$ (或其他合理答案)。(2分)

17. (13分)


(1) 羧基(1分)

(2)
$$COOH$$
 $COOCH_3$ COO

$$2 \xrightarrow{O} + NH_3 \xrightarrow{H-N} H-N$$
(4)

WWW. Saokzx.

WWW.9aokzk.c

(2分)

- (6) 消去 (1分)
- (7) HCOOCH₂—\ \rightarrow NH₂

18. (11分)

(1) 增大固体反应物与酸的接触面积,加快酸浸的速率(1分)

$$V_2O_3+CaO+O_2$$
高温 $Ca(VO_3)_2$ (2分)

- (2) $Ca(VO_3)_2 + 4H^+ = Ca^{2+} + 2VO_2^+ + 2H_2O$ (2分)
- (3) n/m³ (1分)
- (4) 高于 80℃时 NH¼水解程度增大, c(NH¼)减小 (或其他合理答案)(2分)
- (5) ① 2 1 $2H^+$ 2 2 $2H_2O$ (2分)
 - ②18.2a/m×100% (1分)

19. (10分)

- (1) $3Cu+8H^{+}+2NO_{3}^{-}$ = $3Cu^{2+}+2NO\uparrow+4H_{2}O$ (2分)
- (2) ① N₂ (或 CO₂、稀有气体) (1分)
 - ②NO+2HNO₃ (浓) ==3NO₂+H₂O (2分)
- (3) ① Cu(NO₃)₂ (1分)
 - ②> (1分)
 - ③ 加入少量 NaNO₂ (或 HNO₂), 立即产生气泡 (1分)
- (4) $H^++NO_3^-+HNO_2$ =2 NO_2+H_2O (2分)

北京高一高二高三期末试题下载

京考一点通团队整理了【2024年1月北京各区各年级期末试题&答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期末**】或者点击公众号底部栏目<<mark>试题专区</mark>>,进入各年级汇总专题,查看并下载电子版试题及答案!

Q 京考一点通

