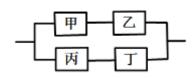
2021 北京一零一中高二(上)期末

数学

一、选择题共10小题,	每小题 5 分,共 50 分.在每	小题列出的四个选项中,选							
1. 将 2 封不同的信投入 3	3个不同的信箱,不同的投资	去种数为()	www.glco						
A. A_3^2	B. C_3^2	C. 3 ²	D. 2 ³						
2. 已知盒中装有 3 个红斑	球、2个白球、5个黑球,它	们大小形状完全相同,现需	言一个红球,甲每次从中任取一个不						
放回,在他第一次拿	到白球的条件下,第二次拿	到红球的概率()							
A. $\frac{3}{10}$	B. $\frac{1}{3}$	C. $\frac{3}{8}$	D. $\frac{2}{9}$						
3. 若直线 2x - y - 4=0 在 x 轴和 y 轴上的截距分别为 a 和 b, 则 a - b 的值为 ()									
A. 6	B. 2	C 2	D 6						
4. 若直线 $y = kx + 1$ 与圆	$ x^2 + y^2 = 1$ 相交于 $P \cdot Q$	两点,且 <i>∠POQ</i> = 90°(其	中 O 为原点),则 k 值为()						
A. $\sqrt{2}$	B. 1	C. $\pm\sqrt{2}$	D. ±1						
5. 将标号为1、2、3、	4、5的五个小球放入三个	不同的盒子中,每个盒子至	至少放一个小球,则不同的放法总数						
为()			18						
A. 150	в. 300	C. 60	D. 90						
6. $\left(x^3 - \frac{2}{x}\right)^4 + \left(x + \frac{1}{x}\right)^8$	的展开式中的常数项为()	D. 38WW.9kaozx.co						
A. 32	В. 34	C. 36	D. 38						
7. 过三点 $A(1,3)$, $B(4,2)$, $C(1,-7)$ 的圆交 y 轴于 M,N 两点,则 $ MN = ()$									
A. $2\sqrt{6}$	B. 8	C. 4√6	D. 10						
8. 双曲线 $C: \frac{x^2}{4} - \frac{y^2}{2} = 1$	右焦点为 F ,点 P 在椭 \mathbb{R}	圆 C 的一条渐近线上. O 为	Y Y Y Y N N N N N N N N N N N N N N N N						
()	$\sqrt{6}$								
A. 该双曲线离心率为	$\sqrt{6}$								

B. 双曲线 $\frac{y^2}{4} - \frac{x^2}{2} = 1$ 与双曲线 C 的渐近线相同

C. 若 $PO \perp PF$,则 $\triangle PFO$ 的面积为 $\sqrt{2}$


D. |PF| 的最小值为2

- 9. 某省新高考方案规定的选科要求为:学生先从物理、历史两科中任选一科,再从化学、生物、政治、地理四门学科中任选两科.现有甲、乙两名学生按上面规定选科,则甲、乙恰有一门学科相同的选科方法有(
 - A. 24 种
- B. 30 种
- C. 48 种
- D. 60种
- 10. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,点 M , N , F 分别为椭圆 C 的左顶点、上顶点、左焦点,若

 $\angle MFN = \angle NMF + 90^{\circ}$,则椭圆 C 的离心率是()

- A. $\frac{\sqrt{5}-1}{2}$
- B. $\frac{\sqrt{3}-1}{2}$
- C. $\frac{\sqrt{2}-1}{2}$
- D. $\frac{\sqrt{3}}{2}$

- 二、填空题共5小题,每小题5分,共25分
- 11. 如果椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$,那么双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为
- 12. 直线 l_1 : 4x-3y+6=0 和直线 l_2 : x=-1 , 抛物线 $y^2=4x$ 上一动点 P 到直线 l_1 和直线 l_2 的距离之和的最小值是______.
- 13. 如图所示,已知一个系统由甲、乙、丙、丁4个部件组成,当甲、乙都正常工作,或丙、丁都正常工作时,系统就能正常工作.若每个部件的可靠性均为r(0 < r < 1),而且甲、乙、丙、丁互不影响,则系统的可靠度为

- 14. 甲、乙两人对同一目标各射击一次,甲命中的概率为 $\frac{2}{3}$, 乙命中的概率为 $\frac{4}{5}$, 且他们的结果互不影响,若命中目标的人数为 ξ ,则 $E(\xi)=$ _______.
- 三、解答题共5小题,共45分.解答题应写出文字说明、演算步骤或证明过程
- 16. 从甲地到Z地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为 $\frac{1}{2}$,

$$\frac{1}{3}$$
, $\frac{1}{4}$.

(1) 设 X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量 X 的分布列和均值.

(2) 若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

17. 已知椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
,过点 $(0,-1)$,离心率 $e = \frac{\sqrt{2}}{2}$

- (1) 求椭圆C的标准方程;
- (2) 过右焦点F 的直线l 与椭圆交于A、B 两点,点M 的坐标为 $\left(2,0\right)$,设直线AM 和BM 的斜率分别为 k_{AM} 和 k_{BM} ,求 k_{AM} + k_{BM} 的值.
- 18. 某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同.
 - (1) 一次从纸箱中摸出两个小球,求恰好摸出2个红球 概率;
 - (2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取 4 次,记取到红球的次数为 ξ ,求 ξ 的分布列;
 - (3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取 20 次,取得几次红球的概率最大?(只需写出结论)
- 19. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0), F_1, F_2$ 为左右焦点,B 为短轴端点,长轴长为 4,焦距为 2c,且 b > c, $\Delta B F_1 F_2$ 的面积为 $\sqrt{3}$.
 - (I)求椭圆C的方程
 - (II)设动直线 l: y = kx + m 椭圆 C 有且仅有一个公共点 M,且与直线 x = 4 相交于点 N .试探究:在坐标平面内是否存在定点 P,使得以 MN 为直径的圆恒过点 P ?若存在求出点 P 的坐标,若不存在.请说明理由.
- 20. (1) 设i 为虚数单位,求 $(\sqrt{3}-i)^7$ 的实部;

(2) 计算:
$$\frac{1}{2^{2021}} \left(1 - 3C_{2021}^2 + 3^2 C_{2021}^4 - 3^3 C_{2021}^6 + \dots - 3^{1009} C_{2021}^{2018} + 3^{1010} C_{2021}^{2020} \right)$$

2021 北京一零一中高二(上)期末数学

参考答案

一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项 www.gk

1. 【答案】C

【解析】

【分析】

直接利用分步原理的应用求出结果.

【详解】解:根据分步原理的应用,

所以:第一封信的投法有3种,第二封信的投法有3种,

故一共有 $3\times3=3^2$ 种投法。

故选: C.

【点睛】<mark>本题</mark>考查的知识要点:分步原理的应用,主要考查学生的运算能力和思维能力,属于基础题.

2. 【答案】B

【解析】

事件 A: "第一次拿到白球",B: "第二拿到红球",则 $P(A) = \frac{2}{10} = \frac{1}{5}$, $P(AB) = \frac{2}{10} \cdot \frac{3}{9} = \frac{1}{15}$,故 $P(B|A) = \frac{P(AB)}{P(A)} = \frac{1}{3}$.

$$\frac{P(AB)}{P(A)} = \frac{1}{3}.$$

3. 【答案】A

【解析】

试题分析: 先将直线的方程化成截距式,结合在 x 轴和 y 轴上的截距分别为 a 和 b,即可求出 a,b 的值,问题 得以解决.

解: 直线 2x - y - 4=0 化为截距式

$$\therefore a=2$$
. $b=-4$.

$$\therefore$$
a - b=2 - (-4) =6,

故选 A.

考点:直线的截距式方程.

4. 【答案】D

【解析】

【分析】

分析出 $\triangle POO$ 为等腰直角三角形,可得出原点O到直线PO的距离,利用点到直线的距离公式可得出关于k的等式,由此可解得k的值.

【详解】圆 $x^2 + y^2 = 1$ 的圆心为原点 O,由于 $\angle POQ = 90^\circ$ 且 |OP| = |OQ| = 1,

所以, $\triangle POQ$ 为等腰直角三角形,且圆心O到直线PQ的距离为 $d = |OP| \sin 45^\circ = \frac{\sqrt{2}}{2}$

由点到直线的距离公式可得 $d = \frac{1}{\sqrt{k^2 + 1}} = \frac{\sqrt{2}}{2}$, 解得 $k = \pm 1$.

故选: D.

【点睛】关键点点睛: 本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式 MMM.C 列方程求解参数.

5. 【答案】A

【解析】

【分析】

将五个小球分为三组,每组小球的数目可以是3、1、1或2、2、1,然后将三组小球分配给三个盒子,利用 分步计数原理可求得结果.

【详解】将五个小球分为三组,每组小球的数目可以是3、1、1或2、2、1,

分组方法种数为 $\frac{C_5^3 C_2^1}{A_2^2} + \frac{C_5^2 C_3^2}{A_5^2} = 25$,

然后将三组小球分配给三个盒子,由分步计数原理可知,不同的放法种数为 $25A_3^3=150$ 种.

故选: A.

【点睛】方法点睛:不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分 WWW.GkaoZX.co 组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.

6. 【答案】D

【解析】

【分析】

利用展开式的通项公式,分别求得 $\left(x^3 - \frac{2}{r}\right)^4$ 和 $\left(x + \frac{1}{r}\right)^8$ 的展开式的常数项,再求和即可.

【详解】 $\left(x^3 - \frac{2}{r}\right)^4$ 的展开式的通项公式为 $T_{r+1} = C_4^r \left(x^3\right)^{4-r} \left(-\frac{2}{x}\right)^r = (-2)^r C_4^r x^{12-4r} \left(r = 0, 1, 2, 3, 4\right)$

令 12-4r=0,解得 r=3,

令12-4
$$r$$
=0,解得 r =3,
所以展开式的常数项为 $\left(-2\right)^{3}$ C_{4}^{3} =-32,
 $\left(x+\frac{1}{x}\right)^{8}$ 的展开式的通项公式为 $T_{k+1}=C_{8}^{k}x^{8-k}\left(\frac{1}{x}\right)^{k}=C_{8}^{k}x^{8-2k}\left(k=0,1,...8\right)$,
令8-2 k =0,解得 k =4,

所以展开式的常数项为 $C_8^4 = 70$,

所以
$$\left(x^3 - \frac{2}{x}\right)^4 + \left(x + \frac{1}{x}\right)^8$$
的展开式中的常数项为-32+70=38

7. 【答案】C

【解析】

【分析】

【详解】由已知得 $k_{AB} = \frac{3-2}{1-4} = -\frac{1}{3}$, $k_{CB} = \frac{2+7}{4-1} = -3$, 所以 $k_{AB}k_{CB} = -1$, 所以 $AB \perp CB$, 即 ΔABC 为直

角三角形,其外接圆圆心为 AC 中点 (1,-2), 半径为长为 $\frac{AC}{2} = 5$, 所以外接圆方程为 NWW.9kaoz

$$(x-1)^2 + (y+2)^2 = 25$$
, $\Rightarrow x = 0$, $\Rightarrow y = \pm 2\sqrt{6} - 2$, $\text{MU} = 4\sqrt{6}$, $\Rightarrow x = 0$.

考点: 圆的方程.

8. 【答案】D

【解析】

【分析】

A. 根据双曲线方程,求出a,b,c,利用离心率公式求解判断;B. 分别求出两个双曲线的渐近线方程判断; C. 根据点 P在渐近线上,又 $PO \perp PF$,利用直线 PO 与直线 PF 的方程联立,求得点 P 的坐标求解判断; D. 由|PF|的最小值为点F到渐近线的距离求解判断.

【详解】A. 因为双曲线方程为 $C: \frac{x^2}{4} - \frac{y^2}{2} = 1$,所以 $a = 2, b = \sqrt{2}, c = \sqrt{6}$,则 $e = \frac{c}{a} = \frac{\sqrt{6}}{2}$,故正确;

B. 双曲线
$$C: \frac{x^2}{4} - \frac{y^2}{2} = 1$$
 与双曲线 $\frac{y^2}{4} - \frac{x^2}{2} = 1$ 的渐近线方程都为 $y = \pm \frac{\sqrt{2}}{2} x$,故正确;

C. 设 P(x,y), 因为点 P 在渐近线上,不妨设渐近线方程为 $y = \frac{\sqrt{2}}{2}x$,即为直线 PO 的方程,又因为

$$PO \perp PF$$
,所以直线 PF 的方程为 $y = -\sqrt{2}(x - \sqrt{6})$,由
$$\begin{cases} y = \frac{\sqrt{2}}{2}x \\ y = -\sqrt{2}(x - \sqrt{6}) \end{cases}$$
,解得
$$\begin{cases} x = \frac{2\sqrt{6}}{3} \\ y = \frac{2\sqrt{3}}{3} \end{cases}$$
,即

$$P\left(\frac{2\sqrt{6}}{3}, \frac{2\sqrt{3}}{3}\right)$$
,所以 $S = \frac{1}{2} \times \sqrt{6} \times \frac{2\sqrt{3}}{3} = \sqrt{2}$,故正确;

D. $F(\sqrt{6},0)$, 其中一条渐近线为 $y = \frac{\sqrt{2}}{2}x$, 则|PF|的最小值为点 F到渐近线的距离,即

故选: D

9. 【答案】D

【解析】

【分析】

以甲,乙所选相同学科是否在物理、历史两科中分为两类,每类中由排列组合公式和基本原理可求.

【详解】解:分为两类,第一类物理、历史两科中是相同学科,则有 $C_2^lC_4^2C_2^2=12$ 种选法;第二类物理、历史两科中没相同学科,则有 $A_2^2C_4^lA_3^2=48$ 种选法,

所以甲、乙二人恰有一门学科相同的选法有12+48=60种,

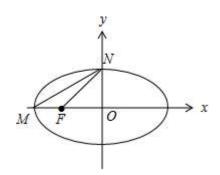
故选: D.

【点睛】本题考查排列组合与基本原理的应用,属于基础题.

10. 【答案】A

【解析】

解:如图所示,


$$tan \angle NMF = \frac{b}{a}$$
, $tan \angle NFO = \frac{b}{c}$

 \therefore $\angle MFN = \angle NMF + 90^{\circ}, \therefore \angle NFO = 180^{\circ} - MFN = 90^{\circ} - \angle NMF,$

即
$$\tan \angle NFO = \frac{1}{\tan \angle NMF}$$
, $\therefore \frac{b}{c} = \frac{a}{b}$, 则 $b^2 = a^2 - c^2 = ac$,

∴
$$e^2+e^{-1}=0$$
, $\neq e=\frac{\sqrt{5}-1}{2}$.

本题选择 A 选项.

点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:

①求出
$$a$$
, c , 代入公式 $e = \frac{c}{a}$;

②只需要根据一个条件得到关于a,b,c的齐次式,结合 $b^2 = a^2 - c^2$ 转化为a,c的齐次式,然后等式(不等式) 两边分别除以a或 a^2 转化为关于e的方程(不等式),解方程(不等式)即可得e(e)的取值范围).

二、填空题共5小题,每小题5分,共25分.

11. 【答案】 $\frac{\sqrt{5}}{2}$

【解析】

【分析】

利用椭圆的离心率可求得 $\frac{b^2}{a^2}$ 的值,进而可求得双曲线的离心率的值.

椭圆的离心率为
$$e_1 = \frac{c_1}{a} = \sqrt{\frac{c_1^2}{a^2}} = \sqrt{\frac{a^2 - b^2}{a^2}} = \sqrt{1 - \frac{b^2}{a^2}} = \frac{\sqrt{3}}{2}$$
, $\therefore \frac{b^2}{a^2} = \frac{1}{4}$,

因此,双曲线的离心率为
$$e_2 = \frac{c_2}{a} = \sqrt{\frac{a^2 + b^2}{a^2}} = \sqrt{1 + \frac{b^2}{a^2}} = \frac{\sqrt{5}}{2}$$
.

【解析】

试题分析: 设抛物线 $y^2 = 4x$ 上的动点 P 的坐标为 $\left(\frac{t^2}{4}, t\right)$,它到到直线 l_1 和 l_2 的距离之和为 d ,则

$$d = \frac{\left| 4 \times \frac{t^2}{4} - 3t + 6 \right|}{5} + \frac{\left| \frac{t^2}{4} + 1 \right|}{1} = \frac{\left| t^2 - 3t + 6 \right|}{5} + \frac{t^2}{4} + 1 = \frac{t^2 - 3t + 6}{5} + \frac{t^2}{4} + 1 = \frac{9}{20}t^2 - \frac{3}{5}t + \frac{11}{5}, \quad \text{if } t = \frac{2}{3} \text{ if } t,$$

$$d_{\min} = \frac{9}{20} \times \frac{4}{9} - \frac{3}{5} \times \frac{2}{3} + \frac{11}{5} = 2.$$

$$d_{\min} = \frac{9}{20} \times \frac{4}{9} - \frac{3}{5} \times \frac{2}{3} + \frac{11}{5} = 2.$$

考点: 直线与抛物线的位置关系及二次函数的最值.

13. 【答案】 $2r^2 - r^4$

【解析】

【分析】

记甲、乙都正常工作为事件A,记丙、丁都正常工作为事件B,计算出P(A)、P(B),利用对立事件的概率 公式可求得系统的可靠度为 $1-P(\overline{A})P(\overline{B})$.

【详解】记甲、乙都正常工作为事件 A ,记丙、丁都正常工作为事件 B ,则 $P(A) = P(B) = r^2$,

当且仅当事件 A 或事件 B 发生时,系统正常工作,

当且仅当事件 A 和事件 B 都不发生时,系统不工作.

因此, 系统的可靠度为 $P = 1 - P(\overline{A})P(\overline{B}) = 1 - (1 - r^2)^2 = 2r^2 - r^4$.

故答案为: $2r^2 - r^4$.

【点睛】关键点点睛:本题考查事件概率的计算,解本题的关键就是确定事件"系统正常运行"的对立事件为 "两条线路都不工作",进而可利用概率的乘法公式以及对立事件的概率公式来进行求解.

14. 【答案】 $\frac{22}{15}$

【解析】

【分析】

本题可分别求出 $\xi=0$ 、 $\xi=1$ 以及 $\xi=2$ 时的概率,

【详解】由题意易知, ξ 的可能取值为0、1、2,

若
$$\xi = 0$$
,则 $P = \frac{1}{3} \times \frac{1}{5} = \frac{1}{15}$;

若
$$\xi = 1$$
,则 $P = \frac{1}{3} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{5} = \frac{6}{15} = \frac{2}{5}$;

若
$$\xi = 2$$
,则 $P = \frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$,

故
$$E(\xi) = 0 \times \frac{1}{15} + 1 \times \frac{2}{5} + 2 \times \frac{8}{15} = \frac{22}{15}$$
,

故答案为: $\frac{22}{15}$.

15. 【答案】 (1).
$$-8$$
 (2). $15x+15y+22=0$

【解析】

【分析】

根据点 A(2,4) 得抛物线方程 $y^2=8x$, 设过点 A(2,4) 的切线方程 y-4=k(x-2), 由相切得

$$\frac{|2k+4-2k|}{\sqrt{1+k^2}}$$
 = 1,解得 $k=\pm\sqrt{15}$,设 $B(x_1,y_1)$, $C(x_2,y_2)$,再由两点表示斜率得 $y_1=\frac{8}{\sqrt{15}}-4$,

$$y_2 = -\frac{8}{\sqrt{15}} - 4$$
,从而得纵坐标之后,再由 $\frac{y_1 - y_2}{x_1 - x_2} = -1$,结合点 (x_1, y_1) 求直线方程即可.

【详解】点
$$A(2,4)$$
在抛物线 $y^2 = 2px(p>0)$ 上,可得 $16 = 4p$,所以 $p = 4$, $y^2 = 8x$,

圆 N 的标准方程为: $(x-2)^2 + y^2 = 1$, 则圆心为(2,0), 半径 r = 1,

设过点 A(2,4) 的切线方程(斜率显然存在)为: y-4=k(x-2),即 kx-y+4-2k=0,

则
$$\frac{|2k+4-2k|}{\sqrt{1+k^2}} = 1$$
,解得 $k = \pm\sqrt{15}$.

不妨令
$$k_{AB} = \sqrt{15}, k_{AC} = -\sqrt{15}$$
 , 设 $B(x_1, y_1), C(x_2, y_2)$,

则
$$\frac{y_1 - 4}{x_1 - 2} = \frac{y_1 - 4}{\frac{y_1^2}{8} - 2} = \frac{8}{y_1 + 4} = \sqrt{15}$$
 , 得 $y_1 = \frac{8}{\sqrt{15}} - 4$,

同理
$$\frac{y_2-4}{x_2-2} = \frac{8}{y_2+4} = -\sqrt{15}$$
, 得 $y_2 = -\frac{8}{\sqrt{15}} - 4$,

所以 $y_1 + y_2 = -8$,

所以直线
$$l$$
 的斜率为:
$$\frac{y_1 - y_2}{x_1 - x_2} = \frac{y_1 - 4}{\frac{y_1^2}{8} - \frac{y_2^2}{8}} = \frac{8}{y_1 + y_2} = -1$$

直线l的方程为: $y-y_1=-(x-x_1)$, 即 $y=-x+x_1+y_1$,

所以
$$y = -x - \frac{22}{15}$$
,即 $15x + 15y + 22 = 0$

故答案为: -8: 15x+15y+22=0

【点睛】关键点点睛: 本题解题的关键是根据直线与圆相切求得切线斜率, 进而利用坐标表示斜率得 NWW.9KaO $y_1 = \frac{8}{\sqrt{15}} - 4 \pi y_2 = -\frac{8}{\sqrt{15}} - 4$, 从而本题得解.

三. 解答题共 5 小题, 共 45 分.解答题应写出文字说明. 演算步骤或证明过程.

16. 【答案】(1)见解析; (2)
$$P(A) + P(B) = \frac{11}{48}$$

【解析】

试题分析: X 表示一辆车从甲地到乙地遇到红灯的个数, X 的所有可能取值为 0.1,2,3.分别求出相应的概率 值,列出随机变量X的分布列并计算数学期望,Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯 的个数,这2辆车共遇到1个红灯就是包括第一辆遇到1次红灯且第2辆没遇上和第一辆没遇上红灯且第2辆 遇上1次红灯两个事件的概率的和.

试题解析: (I) 解: 随机变量 X 的所有可能取值为 0.1.2.3.

$$P(X = 0) = \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{4}\right) = \frac{1}{4}$$

$$P(X=1) = \frac{1}{2} \times \left(1 - \frac{1}{3}\right) \times \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{2}\right) \times \frac{1}{3} \times \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \frac{1}{4} = \frac{11}{24},$$

$$P(X=2) = \left(1 - \frac{1}{2}\right) \times \frac{1}{3} \times \frac{1}{4} + \frac{1}{2} \times \left(1 - \frac{1}{3}\right) \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{3} \times \left(1 - \frac{1}{4}\right) = \frac{1}{4},$$

$$P(X=3) = \frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} = \frac{1}{24}$$
.

所以,随机变量 X 的分布列为

X	0		2	3
P	$\frac{1}{4}$	$\frac{11}{24}$	$\frac{1}{4}$	$\frac{1}{24}$

随机变量
$$X$$
 的数学期望 $E(X) = 0 \times \frac{1}{4} + 1 \times \frac{11}{24} + 2 \times \frac{1}{4} + 3 \times \frac{1}{24} = \frac{13}{12}$.

(II) 解: ∂Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为

$$P(Y+Z=1) = P(Y=0,Z=1) + P(Y=1,Z=0) = P(Y=0)P(Z=1) + P(Y=1)P(Z=0)$$

$$=\frac{1}{4} \times \frac{11}{24} + \frac{11}{24} \times \frac{1}{4} = \frac{11}{48}$$

所以,这 2 辆车共遇到 1 个红灯的概率为 $\frac{11}{48}$

【考点】离散型随机变量概率分布列及数学期望

【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望。,列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.

17. 【答案】 (1)
$$\frac{x^2}{2} + y^2 = 1$$
; (2) $k_{AM} + k_{BM} = 0$.

【解析】

【分析】

- (1) 根据已知条件可得出关于a、b、c的方程组,解出这三个量的值,由此可得出椭圆C的标准方程;
- (2)分直线l与x轴重合与不重合两种情况讨论,在第一种情况下,直接计算 $k_{AM}+k_{BM}$ 的值,在第二种情况下,设直线l的方程为x=my+1,设点 $A(x_1,y_1)$ 、 $B(x_2,y_2)$,联立直线l与椭圆C的标准方程联立,列出韦达定理,利用斜率公式可求得 $k_{AM}+k_{BM}$ 的值.

【详解】(1)设椭圆
$$C$$
的焦距为 $2c(c>0)$,由已知条件可得
$$\begin{cases} \frac{0^2}{a^2} + \frac{(-1)^2}{b^2} = 1\\ e = \frac{c}{a} = \frac{\sqrt{2}}{2}\\ c = \sqrt{a^2 - b^2} \end{cases}$$
,解得
$$\begin{cases} a = \sqrt{2}\\ b = 1\\ c = 1 \end{cases}$$

因此,椭圆 C 的标准方程为 $\frac{x^2}{2} + y^2 = 1$;

(2) 若直线 l 与 x 轴重合,则 A 、 B 为椭圆 C 的长轴的端点,则 $k_{AM} = k_{BM} = 0$,

此时,
$$k_{AM}+k_{BM}=0$$
,

若直线l与x轴不重合,易知点F(1,0),

设直线l的方程为x = my + 1,设点 $A(x_1, y_1)$ 、 $B(x_2, y_2)$,

联立
$$\begin{cases} x = my + 1 \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$$
, 消去 x 并整理得 $(m^2 + 2)y^2 + 2my - 1 = 0$,

$$\Delta = 4m^2 + 4(m^2 + 2) = 8(m^2 + 1) > 0,$$

由韦达定理可得 $y_1 + y_2 = -\frac{2m}{m^2 + 2}$, $y_1 y_2 = -\frac{1}{m^2 + 2}$,

$$k_{AM} = \frac{y_1}{x_1 - 2} = \frac{y_1}{my_1 - 1}$$
,同理可得 $k_{BM} = \frac{y_2}{my_2 - 1}$,

所以,
$$k_{AM} + k_{BM} = \frac{y_1}{my_1 - 1} + \frac{y_2}{my_2 - 1} = \frac{y_1(my_2 - 1) + y_2(my_1 - 1)}{(my_1 - 1)(my_2 - 1)} = \frac{2my_1y_2 - (y_1 + y_2)}{(my_1 - 1)(my_2 - 1)}$$

$$2m \qquad 2m$$

$$= \frac{-\frac{2m}{m^2+2} + \frac{2m}{m^2+2}}{(my_1-1)(my_2-1)} = 0.$$

综上所述, $k_{AM} + k_{BM} = 0$.

【点睛】方法点睛: 利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:

- (1) 设直线方程, 设交点坐标为 (x_1, y_1) 、 (x_2, y_2) ;
- (2) 联立直线与圆锥曲线的方程,得到关于x(或y)的一元二次方程,必要时计算 Δ ;
- (3) 列出韦达定理;
- (4) 将所求问题或题中的关系转化为 $x_1 + x_2$ 、 x_1x_2 的形式;
- (5) 代入韦达定理求解.
- 18. 【答案】 (1) $\frac{1}{2}$; (2) 分布列见解析; (3) 15次.

【解析】

【分析】

- (1) 利用组合数公式和古典概型的概率公式可求得所求事件的概率:
- (2) 由题意可知, $\xi \sim B\left(4,\frac{3}{4}\right)$,利用二项分布可得出随机变量 ξ 的分布列;
- (3) 根据独立重复试验的概率公式可得出结论.

【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,

由古典概型的概率公式可知,所求事件的概率为 $P = \frac{C_3^2}{C_4^2} = \frac{1}{2}$;

(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34,

这样摸球 4 次,则 $\xi \sim B\left(4, \frac{3}{4}\right)$,

所以,
$$P(\xi=0) = \left(\frac{1}{4}\right)^4 = \frac{1}{256}$$
, $P(\xi=1) = C_4^1 \cdot \frac{3}{4} \cdot \left(\frac{1}{4}\right)^3 = \frac{3}{64}$,

$$P(\xi=2) = C_4^2 \cdot \left(\frac{3}{4}\right)^2 \cdot \left(\frac{1}{4}\right)^2 = \frac{27}{128}, \quad P(\xi=3) = C_4^3 \cdot \left(\frac{3}{4}\right)^3 \cdot \frac{1}{4} = \frac{27}{64}, \quad P(\xi=4) = \left(\frac{3}{4}\right)^4 = \frac{81}{256}.$$

因此,随机变量 ξ 的分布列如下表所示:

ξ	0	1	2	3	4"
P	$\frac{1}{256}$	3 64	$\frac{27}{128}$	<u>27</u> 64	$\frac{81}{256}$

(3) 取得15次的红球概率最大.

【点睛】思路点睛: 求解随机变量分布列 基本步骤如下:

- (1) 明确随机变量的可能取值,并确定随机变量服从何种概率分布;
- (2) 求出每一个随机变量取值的概率;
- (3) 列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式 求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.

19. 【答案】(1)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
(2)存在定点 $P(1,0)$

【解析】

【分析】

(I) 由椭圆长轴长为 4, 焦距为 2c, 且 b>c, $\triangle BF_1F_2$ 的面积为 $\sqrt{3}$, 列方程组, 求出 a, b, c, 得椭圆方

(II) 将直线1方程与椭圆方程联立,由直线与椭圆有且只有一个公共点,求出M,由 $\begin{cases} x=4 \\ y=ky+m \end{cases}$,得N

(4, 4k+m). 假设存在定点 P满足条件,由图形对称性知,点 P必在 x 轴上.设 $P(x_1, 0)$,由

 $\overrightarrow{PM} \diamondsuit \overrightarrow{PN} = 0$,得($4x_1 - 4$) $\frac{k}{m} + x_1^2 - 4x_1 + 3 = 0$,由此可求出满足条件的定点.

【详解】(1)由题意知
$$\begin{cases} 2a = 4 \\ \frac{1}{2} \cdot 2c \cdot b = \sqrt{3}, & \text{解得:} \\ a^2 = b^2 + c^2 \end{cases} \begin{cases} a = 2 \\ b = \sqrt{3}, & \text{故椭圆 } C \text{ 的方程是 } \frac{x^2}{4} + \frac{y^2}{3} = 1. \end{cases}$$

(2)
$$\pm \left\{ \frac{y = kx + m}{\frac{x^2}{4} + \frac{y^2}{3}} = 1 \right\} = 1$$
 $= 1$

因为动直线 l 与椭圆 C 有且只有一个公共点 $M(x_0, y_0)$,所以 $m\neq 0$ 且 $\Delta=0$,

即 $64k^2m^2-4(4k^2+3)(4m^2-12)=0$, 化简得 $4k^2-m^2+3=0$.(*)

此时
$$x_0 = -\frac{4km}{4k^2 + 3} = -\frac{4k}{m}$$
, $y_0 = kx_0 + m = \frac{3}{m}$, 所以 $M(-\frac{4k}{m}, \frac{2}{m})$

由
$$\begin{cases} x = 4 \\ y = kx + m \end{cases}$$
 得 $N(4,4k+m)$.

假设平面内存在定点P满足条件,由图形对称性知,点P必在x轴上.

设 $P(x_1,0)$,则 $\overline{PM} \cdot \overline{PN} = 0$ 对满足(*)式的 $m \times k$ 恒成立.

因为
$$\overline{PM} = (-\frac{4k}{m} - x_1, \frac{2}{m}), \overline{PN} = (4 - x_1, 4k + m), \oplus \overline{PM} \cdot \overline{PN} = 0,$$

得-
$$\frac{16k}{m} + \frac{4kx_1}{m} - 4x_1 + x_1 + \frac{12k}{m} + 3 = 0$$
,

整理, 得
$$(4x_1-4)\frac{k}{m}+x^1-4x_1+3=0.(**)$$

整理,得
$$(4x_1-4)$$
 $\frac{k}{m}+x^1-4x_1+3=0.(**)$ 由于 $(**)$ 式对满足 $(*)$ 式的 m , k 恒成立,所以
$$\begin{cases} 4x_1-4 \\ x_1^2-4x_1+3=0 \end{cases}$$
解得 $x_1=1.$

故存在定点 P(1,0), 使得以 MN 为直径的圆恒过点 M.

【点睛】本题考查椭圆标准方程的求法,考查是否存在以线段为直线的圆恒过定点的判断与求法,考查运算求 解能力,考查化归与转化思想,是中档题.

20. 【答案】 (1)
$$-64\sqrt{3}$$
; (2) $\frac{1}{2}$.

【解析】

【分析】

利用数学归纳法证明出 $\left(\cos\theta+i\sin\theta\right)^n=\cos n\theta+i\sin n\theta\left(n\in N^*\right)$.

- (1) 可计算得出 $(\sqrt{3}-i)^7 = -64\sqrt{3}+64i$, 由此可得出结果;
- (2) 由已知条件可得出 $1-3C_{2021}^2+3^2C_{2021}^4-3^3C_{2021}^6+\cdots-3^{1009}C_{2021}^{2018}+3^{1010}C_{2021}^{2020}$ 为复数 $\left(1-\sqrt{3}i\right)^{2021}$ 的实部,

计算得出
$$\left(1-\sqrt{3}i\right)^{2021}=2^{2021}\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$$
,由此可求得所求代数式的值.

【详解】先证明出 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta (n \in N^*)$.

当n=1时,等式成立;

当n=2时, $(\cos\theta+i\sin\theta)^2=\cos^2\theta+2i\sin\theta\cos\theta-\sin^2\theta=\cos2\theta+i\sin2\theta$,等式成立;

假设当n = k时, $(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta (k \in N^*)$.

 = k+1 时, $(\cos\theta + i\sin\theta)^{k+1} = (\cos\theta + i\sin\theta)^k \cdot (\cos\theta + i\sin\theta) = (\cos k\theta + i\sin k\theta) \cdot (\cos\theta + i\sin\theta)$ NWW.9KaoZX.cc

 $= (\cos k\theta \cos \theta - \sin k\theta \sin \theta) + i(\cos k\theta \sin \theta + \sin k\theta \cos \theta)$

$$= \cos[(k+1)\theta] + i\sin[(k+1)\theta],$$

这说明, 当n=k+1时, 等式也成立,

因此,对任意的 $n \in \mathbb{N}^*$, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta (n \in \mathbb{N}^*)$.

(1)
$$\because \sqrt{3} - i = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = 2\left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right],$$

所以,
$$\left(\sqrt{3}-i\right)^7 = 2^7 \left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right]^7 = 2^7 \left[\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right]$$

$$= 2^{7} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = 128 \times \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = -64\sqrt{3} + 64i,$$

因此,复数 $(\sqrt{3}-i)^7$ 的实部为 $-64\sqrt{3}$;

(2)
$$:: (1 - \sqrt{3}i)^{2021}$$
的展开式通项为 $T_{k+1} = C_{2021}^k \cdot (-\sqrt{3}i)^k$,

当k为偶数时, T_{k+1} 为实数;当k为奇数时, T_{k+1} 为纯虚数.

所以,
$$1-3C_{2021}^2+3^2C_{2021}^4-3^3C_{2021}^6+\cdots-3^{1009}C_{2021}^{2018}+3^{1010}C_{2021}^{2020}$$
为复数 $\left(1-\sqrt{3}i\right)^{2021}$ 的实部,

$$\therefore 1 - \sqrt{3}i = 2\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 2\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right],$$

所以,
$$\left(1-\sqrt{3}i\right)^{2021} = 2^{2021} \left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right]^{2021} = 2^{2021} \left[\cos\left(-\frac{2021\pi}{3}\right) + i\sin\left(-\frac{2021\pi}{3}\right)\right]$$

$$=2^{2021}\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right),$$

所以,
$$\frac{1}{2^{2021}} \left(1 - 3C_{2021}^2 + 3^2 C_{2021}^4 - 3^3 C_{2021}^6 + \dots - 3^{1009} C_{2021}^{2018} + 3^{1010} C_{2021}^{2020} \right) = \frac{1}{2^{2021}} \times 2^{2021} \cos \frac{\pi}{3} = \frac{1}{2}.$$

【点睛】关键点点睛: 本题考查与复数、二项式定理的综合应用, 求解的关键就是证明出 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta (n \in N^*)$, 进而将复数利用三角形式转化求解.

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京、辐射全国 31 省市。

北京高考在线平台一直秉承 ''精益求精、专业严谨 ''的建设理念,不断探索 "K12 教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高 考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔 接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

官方微信公众号: bj-gaokao 咨询热线: 010-5751 5980 官方网站: www.gaokzx.com 微信客服: gaokzx2018