海淀区 2021~2022 学年第二学期期末练习

高三数学参考答案

2022.05

一、选择题共10小题,每小题4分,共40分。

题号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	D	C	D	В	C	A	C	A	D	C

二、填空题共5小题,每小题5分,共25分。

题号	(11) (12)	(13)	(14)	(15)
答案	$0 \qquad \{x \mid x < 0\}$	1; $\pm\sqrt{3}$	$\sqrt{2}$; π	123

说明: 13 题、14 题两空前 3 后 2; 15 题全选对 5 分,漏选 1 个 3 分,漏选 2 个 2 分,不选

0 分。12 题写(-∞,0)也可以。

三、解答题共6小题,共85分。

(16) (本小题共14分)

解:(I)因为菱形 *ABCD*中, *AB* // *CD*, 又因为 *CD* ⊄ 平面 *ABE* , *AB* ⊂ 平面 *ABE* , 所以 *CD* // 平面 *ABE* .

(II) 连接 AC,因为 AB = BC, $\angle ABC = 60^{\circ}$, 所以三角形 ABC 为等边三角形. 取 BC 中点 M,连接 AM,则 $AM \perp BC$, 又因为 AD // BC,所以 $AM \perp AD$.

因为 $PA \perp$ 平面ABCD, $AD \subset$ 平面ABCD, $AM \subset$ 平面ABCD, 所以 $PA \perp AD$, $PA \perp AM$.

如图建立空间直角坐标系 A-xvz,

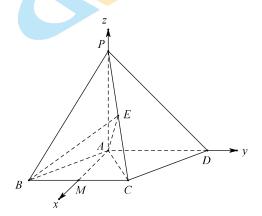
则 A(0,0,0) , $B(\sqrt{3},-1,0)$, D(0,2,0) ,

$$P(0,0,2)$$
, $C(\sqrt{3},1,0)$, $E(\frac{\sqrt{3}}{2},\frac{1}{2},1)$

所以
$$\overline{AB} = (\sqrt{3}, -1, 0)$$
, $\overline{AE} = (\frac{\sqrt{3}}{2}, \frac{1}{2}, 1)$,

$$\overrightarrow{AD} = (0,2,0)$$
,

设平面 ABE 的法向量为 $\vec{n} = (x, y, z)$,则



$$\begin{cases} \vec{n} \cdot \overrightarrow{AB} = 0 \\ \vec{n} \cdot \overrightarrow{AE} = 0 \end{cases}, \quad \text{end} \begin{cases} \sqrt{3}x - y = 0 \\ \frac{\sqrt{3}}{2}x + \frac{1}{2}y + z = 0 \end{cases}.$$

$$\Leftrightarrow x=1$$
, \emptyset $y=\sqrt{3}$, $z=-\sqrt{3}$,

于是
$$\vec{n} = (1, \sqrt{3}, -\sqrt{3}).$$

则
$$DC$$
 到平面 ABE 的距离为 $d = \frac{\left| \overrightarrow{AD} \cdot \overrightarrow{n} \right|}{\left| \overrightarrow{n} \right|} = \frac{2\sqrt{3}}{\sqrt{7}} = \frac{2\sqrt{21}}{7}$

WWW.9kaozx.

(17) (本小题 13 分)

解: (I)由正弦定理
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
 及 $7a = 6b \cos B$,

得 $7 \sin A = 6 \sin B \cos B = 3 \sin 2B$.

因为
$$\sin A = \frac{3}{7}$$
,所以 $\sin 2B = 1$.

又因为
$$0 < \angle B < \pi$$
,

所以
$$\angle B = \frac{\pi}{4}$$
.

(II) 法 1: 选条件②:
$$\sin B = \frac{\sqrt{3}}{2}$$
.

由 $7a = 6b\cos B$ 可知 $\cos B > 0$,所以 $0 < \angle B < \frac{\pi}{2}$.

所以由
$$\sin B = \frac{\sqrt{3}}{2}$$
 可得 $\angle B = \frac{\pi}{3}$.

所以
$$7a = 6b\cos B = 3b$$
 ,即 $b = \frac{7a}{3}$

由余弦定理 $b^2 = a^2 + c^2 - 2ac \cos B$ 及 c = 8,

得
$$(\frac{7a}{3})^2 = a^2 + 8^2 - 2 \times a \times 8 \times \frac{1}{2}$$
,

所以
$$5a^2 + 9a - 72 = 0$$
,

所以
$$a=3$$
 ($a=-\frac{24}{5}$ 舍去),

所以
$$\triangle ABC$$
 的面积为 $S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2} \times 3 \times 8 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$.

法 2: 选条件②:
$$\sin B = \frac{\sqrt{3}}{2}$$
.

由
$$7a = 6b\cos B$$
 可知 $\cos B > 0$,所以 $0 < \angle B < \frac{\pi}{2}$.

所以由
$$\sin B = \frac{\sqrt{3}}{2}$$
 可得 $\angle B = \frac{\pi}{3}$.

所以
$$7a = 6b\cos B = 3b$$
,

所以
$$\sin A = \frac{3\sqrt{3}}{14}$$
,

因为
$$a = \frac{3}{7}b < b$$
,所以 $A < B = \frac{\pi}{3}$,

所以
$$\cos A = \sqrt{1 - \sin^2 A} = \frac{13}{14}$$
,

所以
$$\sin C = \sin(A+B) = \sin A \cos B + \cos A \sin B = \frac{8\sqrt{3}}{14}$$
,

由正弦定理可得
$$a = \frac{c \sin A}{\sin C} = 3$$
,

所以
$$\triangle ABC$$
 的面积为 $S_{\triangle ABC} = \frac{1}{2}ac\sin B = \frac{1}{2} \times 3 \times 8 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$.

(18) (本小题 14 分)

解: (I) (i) 设事件 A 为组内三个 PMI 值至少有一个低于 50.0,

则事件 A 包含的结果有 (50.4,50.1,49.6),(50.1,49.6,49.2), (49.6,49.2,50.1), (49.2,50.1,50.3),共4个,

则
$$P(A) = \frac{4}{10} = \frac{2}{5}$$
.

(ii) X 的取值范围是 {0,1,2}

$$P(X=0) = \frac{5}{10} = \frac{1}{2}$$
, $P(X=1) = \frac{2}{5}$, $P(X=2) = \frac{1}{10}$

X 的分布列为

1	• 1 / •/ •			
	X	0	1	2
	P	$\frac{1}{2}$	$\frac{2}{5}$	$\frac{1}{10}$

www.gkao 所以随机变量 X 的数学期望 $E(X) = 0 \times \frac{1}{2} + 1 \times \frac{2}{5} + 2 \times \frac{1}{10} = \frac{3}{5}$

(Ⅱ)8月份.

(19) (本小题 14分)

解: (I) 由题意得
$$\begin{cases} a = 2, \\ e = \frac{c}{a} = \frac{\sqrt{3}}{2}, \\ b^2 = a^2 - c^2 \end{cases}$$

解得
$$b^2 = 1$$

解得
$$b^2 = 1$$
.
所以椭圆 M 的方程为 $\frac{x^2}{4} + y^2 = 1$.

(II) 当直线 I的斜率不存在时,四边形 ABCD 不可能为平行四边形

当直线
$$l$$
 的斜率存在时,设 $l: y = kx + \frac{\sqrt{3}}{2}$,

由
$$\begin{cases} y = kx + \frac{\sqrt{3}}{2}, & \text{得} (1 + 4k^2)x^2 + 4\sqrt{3}kx - 1 = 0 \\ x^2 + 4y^2 = 4 \end{cases}.$$

$$\Delta = \left(4\sqrt{3}k\right)^2 + 4\left(1 + 4k^2\right) = 4\left(16k^2 + 1\right) > 0.$$

设
$$B(x_1, y_1), C(x_2, y_2)$$
,则 $x_1, x_2 = \frac{-4\sqrt{3}k \pm \sqrt{\Delta}}{2(1+4k^2)}$

所以
$$|x_1-x_2| = \frac{\sqrt{\Delta}}{1+4k^2}$$
.

由四边形 ABCD 为平行四边形可得 $\overline{AD} = \overline{BC}$,

所以
$$|x_A - x_D| = |x_1 - x_2|$$
,即 $2 = \frac{\sqrt{4(16k^2 + 1)}}{1 + 4k^2}$,

解得
$$k^2 = 0$$
或 $\frac{1}{2}$, 所以 $k = 0$ 或 $k = \pm \frac{\sqrt{2}}{2}$.

所以,直线
$$l$$
 的方程为 $y = \frac{\sqrt{3}}{2}$ 或 $y = \frac{\sqrt{2}}{2}x + \frac{\sqrt{3}}{2}$ 或 $y = -\frac{\sqrt{2}}{2}x + \frac{\sqrt{3}}{2}$ -

(20) (本小题 15 分)

解: (I) 当
$$a = 0$$
 时, $f(x) = \ln \frac{1-x}{2}$, $f'(x) = \frac{1}{x-1}$.

所以
$$f(-1) = 0$$
, $f'(-1) = -\frac{1}{2}$.

所以曲线 y = f(x) 在点 (-1, f(-1)) 处的切线方程为: $y - 0 = -\frac{1}{2}(x+1)$,即 $y = -\frac{1}{2}x - \frac{1}{2}$.

$$\mathbb{RP} \ y = -\frac{1}{2}x - \frac{1}{2} \, .$$

(II) y = f(x) 的定义域为 $(-\infty,0) \cup (0,1)$,

令
$$f'(x) = 0$$
, 得 $x = -1$ 或 $x = \frac{1}{2}$.

f'(x)与 f(x) 的情况如下:

n x	$(-\infty, -1)$	-1	(-1,0)	$(0,\frac{1}{2})$	$\frac{1}{2}$	$(\frac{1}{2},1)$
f'(x)	_	0	+	+	0	_
f(x)	`	$\frac{1}{2}$	1	1	$\ln\frac{1}{4} - \frac{1}{4}$	`~

所以 y = f(x) 的单调增区间为(-1,0), $\left(0,\frac{1}{2}\right)$,单调减区间为 $\left(-\infty,-1\right)$, $\left(\frac{1}{2},1\right)$

(III) 法 1:

"
$$f(-1) = -a \ge \frac{1}{2}$$
" 是" $x < 0$ 时, $f(x) \ge \frac{1}{2}$ 恒成立"的必要条件.

$$\triangleq a \le -\frac{1}{2}, \quad x < 0 \text{ B}, \quad f(x) = \ln \frac{1-x}{2} + \frac{a}{x} \ge \ln \frac{1-x}{2} - \frac{1}{2x}.$$

设
$$g(x) = \ln \frac{1-x}{2} - \frac{1}{2x}$$
,

由(II)知,
$$y = g(x)$$
在 $(-\infty,0)$ 上满足 $g(x) \ge g(-1) = \frac{1}{2}$,

所以, 当
$$a \le -\frac{1}{2}$$
, $x < 0$ 时, $f(x) = \ln \frac{1-x}{2} + \frac{a}{x} \ge g(x) \ge \frac{1}{2}$,

所以a的取值范围是 $(-\infty, -\frac{1}{2}]$.

因为
$$x < 0$$
时, $f(x) \geqslant \frac{1}{2}$ 恒成立,

所以
$$a \leq \frac{x}{2} - x \ln \frac{1-x}{2}$$
.

所以
$$g'(x) = \frac{1}{2} - \ln \frac{1-x}{2} - \frac{x}{x-1} = -\ln \frac{1-x}{2} - \frac{1}{x-1} - \frac{1}{2}$$

分析解析式发现 g'(-1) = 0.

$$\Rightarrow h(x) = g'(x) = -\ln \frac{1-x}{2} - \frac{1}{x-1} - \frac{1}{2},$$

所以
$$h'(x) = -\frac{1}{x-1} + \frac{1}{(x-1)^2} = \frac{2-x}{(x-1)^2} > 0$$
.

所以h(x) = g'(x)单调递增.

g'(x)与g(x)的情况如下:

x	$(-\infty, -1)$	-1	(-1,0)
g'(x)		0	+
	10	1	
g(x)	201	$\frac{-\overline{2}}{2}$	1

所以
$$g(x)_{\min} = g(-1) = -\frac{1}{2}$$

所以 $g(x)_{min} = g(-1) = -\frac{1}{2}$, 所以 a 的取值范围是 $(-\infty, -\frac{1}{2}]$.

$$f'(x) = \frac{1}{x-1} - \frac{a}{x^2}$$
,

①当
$$a \ge 0$$
时,因为 $x < 0$,所以 $f(x) = \ln \frac{1-x}{2} + \frac{a}{x} \le \ln \frac{1-x}{2}$

取
$$x = -1$$
, 得 $f(-1) \le \ln \frac{1 - (-1)}{2} = 0$, 不合题意;

②
$$\stackrel{\underline{}}{=} a < 0$$
 $\stackrel{\underline{}}{=} f'(x) = \frac{1}{x-1} - \frac{a}{x^2} = \frac{x^2 - a(x-1)}{(x-1)x^2}$,

显然 $x^2 - ax + a = 0$ 存在唯一负实数根 x_0 ,且在 $(-\infty, x_0)$ 上 f'(x) < 0,在 $(x_0, 0)$ 上 f'(x) > 0,

NWW.9kaoz

所以 f(x) 在 $(-\infty, x_0)$ 上递减,在 $(x_0, 0)$ 上递增,所以 $f(x) \ge f(x_0)$,

由
$$f'(x_0) = \frac{1}{x_0 - 1} - \frac{a}{x_0^2} = 0$$
 得 $a = \frac{x_0^2}{x_0 - 1}$,

所以
$$f(x_0) = \ln \frac{1-x_0}{2} + \frac{x_0}{x_0-1}$$
,

满足
$$f(x_0) = \ln \frac{1-x_0}{2} + \frac{x_0}{x_0-1} \ge \frac{1}{2}$$
 成立即可满足题意,

所以
$$g(x)$$
在 $x < 0$ 时单调递减,又 $g(-1) = \frac{1}{2}$,所以 $x_0 \le -1$,

设
$$h(x) = \frac{x^2}{x-1}$$
,则 $h'(x) = \frac{x(x-2)}{(x-1)^2} > 0$ 在 $x > 0$ 时成立

所以 h(x) 在 $(-\infty,0)$ 单调递增,

所以
$$a = \frac{x_0^2}{x_0 - 1} \le h(-1) = -\frac{1}{2}$$
 时 $f(x) \ge \frac{1}{2}$ 恒成立.

(21) (本小题 15 分)

解: (I) M=4, S=7.

- (II) *M*的最大值为8.
 - ① 构造数列: 1, 2, 2, 2, 3, 3, 3, 1, 此时 M=8.
 - ② 当存在连续三项为 1, 1, 1 时,本题中有两条边为 1, 1 的等腰三角形仅有 1, 1, 1,与 *M* ≥ 4 矛盾, 舍.
 - ③ 当不存在连续三项为1,1,1时,

连续三项(不考虑这三项的顺序)共以下6种可能:

- 1, 2, 2; 1, 3, 3; 2, 2, 2; 2, 2, 3; 2, 3, 3; 3, 3, 3. 所以 $M \le 6+2=8$.
- ④ 由①②③, *M*的最大值为8.
- (III) S的最小值为50.
 - ① 构造数列: 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 3, 3, 1, 此时 *S* = 50.
 - ②设T 为数列的每一组连续三项的和的和,则
 - $3S = T + 2a_1 + 2a_{16} + a_2 + a_{15}.$
 - ③ 连续三项(不考虑这三项的顺序)及这三项的和(标注在下面的括号内)有以下可能:

w.9kaoz

- 2, 2, 1 (5); 2, 2, 2 (6); 2, 2, 3 (7);
- 3, 3, 1 (7); 3, 3, 2 (8);; 3, 3, 5 (11);
- 4, 4, 1 (9); 4, 4, 2 (10); 4, 4, 3 (11);; 4, 4, 7 (15);
- 5, 5, 1 (11); 5, 5, 2 (12); 5, 5, 3 (13);; 5, 5, 9 (19);
- <u>6, 6, 1 (13)</u>; <u>6, 6, 2 (14)</u>; <u>6, 6, 3 (15)</u>;; 6, 6, 11 (23);

.

其中画横线的连续三项必为数列的首三项或尾三项, 故其对应的三角形至多出现两个.

- 4 \pm 3, $T \ge (5+7) + (6+7+8+9+10+11+11+12+13+13+14+14) = 140$
 - $2a_1 + 2a_{16} + a_2 + a_{15} \ge 2 \times 1 + 2 \times 1 + 2 + 3 = 9$,

 $\mathbb{Z} \oplus \mathbb{Z}$, $3S \ge 140 + 9 = 149$,

所以 $S \ge 50$.

⑤ 由①④, S的最小值为50.

2022 北京高三各区二模试题下载

北京高考资讯公众号搜集整理了【2022 北京各区高三二模试题&答案】,想要获取试题资 料,关注公众号,点击菜单栏【一模二模】→【二模试题】,即可免费获取全部二模试题及 答案, 欢迎大家下载练习!

还有更多二模成绩、排名、赋分等信息,考后持续分享!

治 微信搜一搜

Q 北京高考资讯

