北京市朝阳区 2022~2023 学年度第一学期期中质量检测

高三化学试卷

(考试时间90分钟 满分100分)

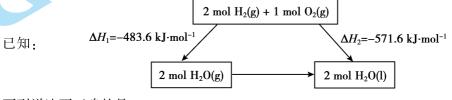
可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 Fe 56 Cu 64 As 75

第一部分

本部分共 14 题,每题 3 分,共 42 分。在每题列出的四个选项中,选出最符合题目要求的一项。

1.《天工开物》记录了用天然气煮盐的过程:"西川有火井(天然气井),事奇甚。其井居然 冷水,绝无火气。但以长竹剖开去节,合缝漆布,一头插入井底,其上曲接,以口紧对釜 脐,注卤水釜中,只见火意烘烘,水即滚沸。"

下列有关说法不正确的是


- A. 天然气属于化石能源,其主要成分是甲烷
- B. 甲烷是由极性键构成的极性分子,易溶于水
- C. 甲烷完全燃烧反应为: CH₄ + 2O₂ ^{点燃}→ CO₂ + 2H₂O
- D. 用天然气煮盐,利用的是蒸发结晶的方法
- 2. 下列关于 HCHO 及构成微粒的化学用语或图示表达不正确的是
 - A. O 的原子结构示意图: (+8) 2 6
 - B. 基态 C 原子的轨道表示式: N ls 2s 2p
 - C. C 原子杂化轨道示意图: 4
 - sp
 - D. HCHO 的分子结构模型:
- 3. 下列事实或现象不能用元素周期律解释的是
 - A. 相同温度、相同物质的量浓度时,醋酸的 pH 大于盐酸
 - B. 醛基的碳氧双键中,氧原子带部分负电荷
 - C. Mg 和水的反应不如 Na 和水的反应剧烈
 - D. 向 NaBr 溶液中滴加氯水,溶液变黄

关注北京高考在线官方微信:北高高传筝武峰微**第号 贞/映**奕页) 获取更多试题资料及排名分析信息。

- 4. 化学创造美好生活。下列劳动项目涉及反应的方程式不正确的是
 - A. 工人用 FeCl₃ 溶液制作电路板,利用反应: 2Fe³⁺ + Cu === 2Fe²⁺ + Cu²⁺
 - B. 药剂师用 Al(OH)₃ 作抗胃酸药,利用反应: Al(OH)₃ + 3H⁺ === Al³⁺ + 3H₄O
 - C. 船舶工程师在船体上镶嵌锌块,防止反应: $Fe 2e^- = Fe^{2+}$
 - D. 工人将模具干燥后再注入熔融钢水,防止反应: 2Fe + 3H,O $\stackrel{\text{§}}{=}$ Fe,O₃ + 3H,
- 5. 实验室制取氯气,下列装置("→"表示气流方向)和试剂选择均正确的是

- A. 制备 Cl。 6. 2022 北京冬奥会采用氢气作为火炬燃料,选择氢能汽车作为赛事交通服务用车,充分体
- 现了绿色奥运的理念。

下列说法不正确的是

- A. 氢气既可以通过燃烧反应提供热能,也可以设计成燃料电池提供电能
- B. H₂O(g) === H₂O(l)的过程中, $\Delta H < 0, \Delta S < 0$
- N.gaokZ C. 断裂 2 mol H, 和 1 mol O, 中化学键所需能量大于断裂 2 mol H, O 中化学键所需能量
- D. 化学反应的 ΔH ,只与反应体系的始态和终态有关,与反应途径无关
- 7. N_{Λ} 为阿伏加德罗常数的值。下列说法正确的是
 - A. 28 g 乙烯和丙烯的混合气体中含有的碳原子数为 $2N_{\Lambda}$
 - B. 1.8 g 重水(²H₂O) 中所含质子数为 N₄
 - C. 电解粗铜精炼铜,通过电路的电子数为 N_A 时,阳极有 32 g Cu 转化为 Cu²⁺
 - D. 0.1 mol·L-1 NH₄Cl溶液中, NH₄、NH₃·H₂O数目之和为 0.1N₄
- 8. 下列物质混合后, 因发生氧化还原反应使溶液 pH 减小的是
 - A. 向浓硝酸中加入铜粉,产生红棕色气体
 - B. 向水中加入 Na,O, 固体,产生无色气体
 - C. 向碘水中通入 SO₂ 气体,碘水颜色变浅
 - D. 向 CuSO₄ 溶液中通入 H₂S 气体,生成黑色沉淀

关注北京高考在线官方微信:北高高格姿武紫微第号页ietax页)获取更多试题资料及排名分析信息。

9. 向碘水中加入 KI 溶液,发生反应: $I^{-}(aq) + I_{2}(aq) \rightleftharpoons I_{3}(aq)$, 充分反应达平衡后,测得 微粒浓度如下:

微粒	I-	I_2	I_3^-
浓度/(mol・L ⁻¹)	2. 5×10 ⁻³	2. 5×10 ⁻³	4. 0×10 ⁻³

下列说法不正确的是

- A. 向所得溶液中加入 CCl_4 ,振荡静置,水层 $c(I_2)$ 降低
- B. 向所得溶液中加入等体积水, $c(I_2) < 1.25 \times 10^{-3} \text{ mol } \cdot L^{-1}$
- C. 该温度下,反应 $I^- + I_2 \rightleftharpoons I_3$ 的 K = 640
- D. 配制碘水时,加入少量 KI,可促进 I,的溶解
- 10 小组同学用加下方法制作简单的燃料由池

10.	。 小型的子们就上为在的作的子们然外飞起。								
	步骤	装置	操作	现象					
	1	K ₂ , K ₁	打开 K ₂ ,闭合 K ₁	两极均产生气体					
	2	石墨 — 石墨(II)	打开 K ₁ ,闭合 K ₂	电流计指针发生偏转					

下列说法不正确的是

- A. ①中 Cl⁻比 OH⁻容易失去电子,在石墨(I)发生氧化反应
- B. ①中还可观察到石墨(Ⅱ)电极附近的溶液变红
- C. ②导线中电子流动方向: 从石墨(Ⅱ)电极流向石墨(Ⅰ)电极
- 11. 小组同学用以下流程去除粗盐水中的 SO²⁺、Ca²⁺、Mg²⁺, 获得了精制盐水。

 BaCO NoOT Str

粗盐水	BaCO ₃	NaOH	过滤	请	рН	粗制盐水
性血小	①	2	3	滤液	4	祖利益小
			滤渣			

已知·i.

物质	BaSO ₄	BaCO ₃	$CaCO_3$	Mg(OH) ₂
K _{sp} (25 ℃)	1. 1×10 ⁻¹⁰	2. 6×10 ⁻⁹	3. 4×10 ⁻⁹	5. 6×10 ⁻¹²

jj. 粗盐水中 $c(SO_4^{2-}) > c(Ca^{2+})$

下列说法不正确的是

- A. ①的反应为: BaCO₃ + SO₄²⁻ ⇒ BaSO₄ + CO₃²⁻
- B. ②中当溶液 pH = 11 时, Mg^{2+} 已沉淀完全(即浓度小于 10^{-5} mol·L⁻¹)
- C. ③的滤渣中除泥沙外,还有 BaSO₄、CaCO₃、Mg(OH)₂、BaCO₃等物质
- D. ④中用稀盐酸调溶液 pH 为中性或微酸性,以除去 OH-、CO₃-

关注北京高考在线官方微信:北高高春姿武紫微**第号页istxx**页)获取更多试题资料及排名分析信息。

12. 研究催化剂对 $2NH_3$ $\stackrel{\text{催化剂}}{\longleftarrow}$ N_2 + $3H_2$ 反应速率的影响。恒温、恒容时, $c(NH_3)$ 随时间 的变化如下。

时间/min $c(NH_3)/(\times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ 催化剂	0	20	40	60,14	80
催化剂 I	2. 40	2. 00	1.60	1. 20	0.80
催化剂 Ⅱ	2. 40	1.60	0. 80	0.40	0.40

下列说法不正确的是

- A. 使用催化剂 $I_{0} \sim 20 \text{ min }$ 的平均反应速率 $v(N_{2}) = 1.00 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1} \cdot \text{min}^{-1}$
- B. 使用催化剂 Ⅱ, 达平衡后容器内的压强是初始时的 $\frac{11}{6}$ 倍
- C. 相同条件下,使用催化剂Ⅱ可使该反应的活化能降低更多,反应更快
- D. 相同条件下,使用催化剂Ⅱ可使该反应的化学平衡常数更大
- 13. 实验室用如下方法制备 $Na_2S_2O_3$ 。

$$Na_2SO_3 \xrightarrow{H_2SO_4} SO_2 \xrightarrow{Na_2S_1Na_2CO_3}$$
混合液, $\triangle \longrightarrow Na_2S_2O_3$ 溶液 $\longrightarrow Na_2S_2O_3$

- 已知: $\dot{1}$. $Na_2SO_3 + S \stackrel{\triangle}{=\!=\!=} Na_2S_2O_3$
 - ii. 过程②中溶液先变浑浊再变澄清,得到 Na,S,O, 溶液

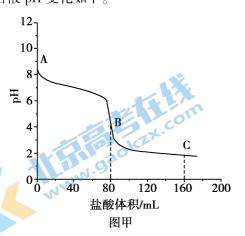
下列说法不正确的是

- A. 过程②中溶液先变浑浊可能的原因: 2Na₂S + 3SO₂ === 2Na₂SO₃ + 3S√
- B. 过程②中 Na_2CO_3 的作用: $SO_2 + Na_2CO_3 \stackrel{\triangle}{=\!=\!=} Na_2SO_3 + CO_2$
- C. 过程②中加入适量乙醇可增大S的溶解度,加快反应速率
- D. 过程②中通入过量 SO,,可增大 Na,S,O,的产率
- 14. 探究某浓度 NaClO 溶液先升温再降温过程中漂白性的变化。实验过程中,取①~④时刻 的等量溶液,加入等量红纸条,褪色时间如下。

时刻	1	2	3	4
温度/℃	25	45	65	25
褪色时间/min	4.	t_2	t_3	${ m t_4}$

其中, $t_4 > t_1 > t_2 > t_3$ 。

下列说法不正确的是


- B. $1 \rightarrow 3$ 的过程中,温度对 ClO^- 水解程度、HClO 与红纸条反应速率的影响一致
- C. $t_a > t_1$ 的原因: ③→④的过程中,温度降低,ClO⁻水解平衡逆向移动,c(HClO)降低
- D. 若将溶液从 45 ℃ 直接降温至 25 ℃,加入等量红纸条,推测褪色时间小于 t₄

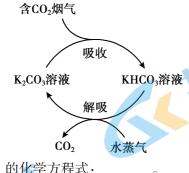
关注北京高考在线官方微信:北高高格姿武紫微第号 页ietax页) 获取更多试题资料及排名分析信息。

第二部分

本部分共5题,共58分。

- 15. (8分)小组同学对比 Na, CO, 和 NaHCO, 的性质,进行了如下实验。
 - (1)向相同体积、相同浓度的 Na_2CO_3 和 $NaHCO_3$ 溶液中分别滴加 $0.1 \text{ mol} \cdot L^{-1}$ 的盐酸,溶液 pH 变化如下。

- ① 图_____(填"甲"或"乙")是 Na₂CO₃的滴定曲线。
- ② A'~B'发生反应的离子方程式为。
- ③ 下列说法正确的是____(填序号)。
 - a. Na₂CO₃ 和 NaHCO₃ 溶液中所含微粒种类相同
 - b. $A \setminus B \setminus C$ 均满足: $c(Na^+) + c(H^+) = 2c(CO_3^{2-}) + c(HCO_3^{-}) + c(OH^{-})$
 - c. 水的电离程度: A > B > C
- (2)向 1 mol·L⁻¹的 Na₂CO₃ 和 NaHCO₃ 溶液中分别滴加少量 FeCl₂ 溶液,均产生白色沉淀,后者有气体产生。


资料:

- İ. 1 mol·L⁻¹的 NaHCO₃ 溶液中, $c(CO_3^{2-}) = 1 \times 10^{-2}$ mol·L⁻¹, $c(OH^-) = 2 \times 10^{-6}$ mol·L⁻¹
- ii. 25 °C 时, K_{sp} (FeCO₃) = 3.2×10⁻¹¹, K_{sp} [Fe(OH)₂] = 5.0×10⁻¹⁷
- ① 补全 NaHCO3 与 FeCl2 反应的离子方程式:

 $\Box HCO_3^- + \Box Fe^{2+} = \Box FeCO_3 \downarrow + \Box + \Box + \Box$

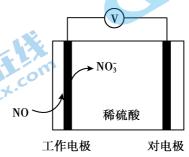
② 通过计算说明 NaHCO₃ 与 FeCl₂ 反应产生的沉淀为 FeCO₃ 而不是 Fe(OH)₂

- 16. (11 分)将 CO₂ 富集、活化、转化为具有高附加值的化学品对实现碳中和有重要意义。
 - (1)一种富集烟气中 CO, 的方法示意图如下:

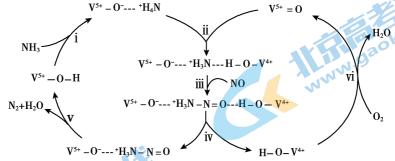
写出"解吸"过程产生 CO, 的化学方程式:

- (2)CO, 性质稳定, 使其活化是实现转化的重要前提。
 - ① 使用过渡金属作催化剂,提供空轨道接受_____(填"C"或"O")原子的孤电子对,破坏 CO_2 的结构使其活化。
 - ② 采用电化学、光化学等手段,使 CO₂ _____(填"提供"或"接受")电子转化为 CH₃OH。
- (3)CO, 与 H, 在催化剂作用下可转化为 CH, OH, 体系中发生的主要反应如下:
 - $i \cdot CO_2(g) + 3H_2(g) \Longrightarrow CH_3OH(g) + H_2O(g) \quad \Delta H_1 = -49 \text{ kJ} \cdot \text{mol}^{-1}$
 - ii. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g) \quad \Delta H_2 = +41 \text{ kJ} \cdot \text{mol}^{-1}$

研究表明,CO 与 H_2 也能生成 CH_3OH ,写出该反应的热化学方程式:______


(4) 在催化剂作用下,将 1 mol CO₂、3 mol H₂ 投入反应器,反应温度对 CO₂ 平衡转化率 X(CO₂)、CH₃OH 选择性 Y(CH₃OH)的影响如下。

30 WWW. gaokzk. n(转化为 CH_3OH 的 $CO_2)$ 已知: Y(CH₃OH)= n(转化的 CO₂) 90 25 80 70 Y(CH₃OH)/% 60 50 15 40 10 30 (240, 20)200 220 260 280 300


- 温度/℃
 ① X(CO₂) 随温度升高逐渐增大、Y(CH₃OH) 随温度升高逐渐减小的原因是
- ② 在 240 ℃达到平衡时,体系_____(填"吸收"或"放出")的热量为_____kJ (除了反应 i 和 ji,不考虑其他反应)。

关注北京高考在线官方微信:北高高格姿武紫微**第号页/建双页**)获取更多试题资料及排名分析信息。

- 17. (12 分)选择性催化还原技术(SCR 技术)可有效降低柴油机尾气中 NO_x 的排放。其原理是在催化剂作用下,用 NH₃ 等物质将尾气中的 NO_x 转化为 N₂。 ◆
 - (1)柴油机尾气中的 NO_x 是由 N_2 和 O_2 在高温或放电条件下生成的。
 - ① 写出 N₂ 的电子式:_____。
 - ② 高温尾气 NO_x 中绝大多数为 NO_x 推测 $2NO_x$ + O_2 \Longrightarrow $2NO_x$ 为 (填"放热"或"吸热")反应。
 - (2) 在催化剂作用下,NH,还原 NO2 的化学方程式为
 - (3)用传感器检测 NO 的含量,其工作原理示意图如下:

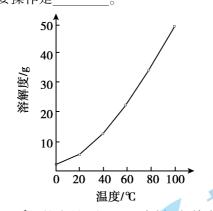
- ①写出工作电极的电极反应式:____。
- ② 若用该传感器测定 NO_2 的含量,则传感器信号响应方向(即电流方向)相反,从物质性质角度说明原因:____。
- (4)一种研究认为,有氧条件下 NH₃ 与 NO 在催化剂表面的催化反应历程如下(催化剂中部分原子未表示):

- ① 下列说法正确的是 (填序号)。
 - a. 过程涉及了配位键的形成与断裂
 - b. 反应 i~vi均属于氧化还原反应
 - c. NH, 与 NO 反应而不与 O2 直接反应,体现了催化剂的选择性
- ② 根据上图,写出 NH,选择性催化还原 NO 的总反应方程式:

18. (13 分) 溴酸钾(KBrO₃) 可用于测定水体中的砷含量。

(1) KBrO, 的一种制法如下。

- ① Br₂与 KOH 溶液反应时,若产生 1 mol KBrO₃,理论上需要 mol Br₂。
- ② Cl₂ 能提高溴的原子利用率。用离子方程式表示 Cl₂ 的作用:
- ③ 已知:


25 ℃时的溶度积(K_{sp})

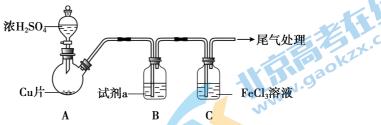
	Ba(BrO ₃) ₂	BaCO ₃
$K_{ m sp}$	2. 4×10 ⁻⁴	2. 6×10 ⁻⁹

设计由"含 KBrO₃ 的溶液"到"较纯净的 KBrO₃ 溶液"的流程:_____(按上图形式

呈现,箭头上方注明试剂,下方注明操作,如 NaCl 溶液 AgNO3 溶液 AgCl 固体)。

④ KBrO, 的溶解度随温度变化如下图所示。从"较纯净的 KBrO, 溶液"中得到 "KBrO, 固体"的主要操作是

(2)测定水体中亚砷酸盐(AsO_3^{3-})的含量:取 a mL 水样,向其中加入一定量盐酸使 AsO_3^{3-} 转化为 H_3AsO_3 ,再加入 2 滴甲基橙指示剂和一定量 KBr,用 c mol·L⁻¹ $KBrO_3$ 溶液进行滴定,达到滴定终点时,消耗 $KBrO_3$ 溶液 v mL。滴定过程中发生如下反应:


反应 a: 3H₃AsO₃ + BrO₃ = 3H₃AsO₄ + Br⁻

反应 b: BrO₃ + 5Br + 6H + 3Br₂ + 3H₂O

当 H₃AsO₃ 反应完全后,甲基橙与生成的 Br₂ 反应而褪色,即达到滴定终点。

- ① 配制一定物质的量浓度的 KBrO₃ 溶液,需要用到的玻璃仪器有烧杯、玻璃棒、胶头滴管和
- ② 水样中 AsO₃³⁻ 的含量为_____g·L⁻¹。【已知: M(AsO₃³⁻)= 123 g·mol⁻¹】
- ③ 滴定过程需保持在 60 ℃。若温度过低,甲基橙与 Br₂ 的反应速率较慢,会使测定结果 (填"偏高"或"偏低")。

- 19. (14分)某小组同学探究 SO, 与 FeCl, 溶液的反应。
 - (1)实验 I:用如下装置(夹持、加热仪器略)制备 SO2,将 SO2 通入 FeCl3 溶液中。

实验现象: A 中产生白雾; C 中溶液由黄色变成红棕色, 静置 5 min 后, 溶液颜色从红棕色变回黄色, 检测到 Fe²⁺; 静置 9 h 后, 溶液变为浅绿色。

- ① 浓 H₂SO₄ 与 Cu 反应的化学方程式是______
- ② 试剂 a 是
- (2)分析 C 中溶液颜色变化的原因。
 - ① 溶液颜色由黄色最终变为浅绿色的原因是 (写离子方程式)。
 - ② 针对溶液颜色变为红棕色,提出了两种假设。

假设 1: 主要与 SO₂、H₂SO₃ 有关。

假设 2: 主要与 SO₃²⁻、HSO₃ 有关。

实验Ⅱ证实假设1不成立,假设2成立。

实验 Ⅱ: 向 FeCl₃ 溶液中加入 NaHSO₃ 溶液,_____(填现象),然后滴加___ (填试剂),溶液变为黄色。

(3)进一步探究 FeCl, 与 SO3-、HSO3 显红棕色的原因。

查阅资料: Fe³⁺ + nSO₃²⁻ + mH₂O ← [Fe(SO₃)_n(H₂O)_m]³⁻²ⁿ(红棕色)

实验Ⅲ: 向 FeCl₃ 溶液中滴加 Na₂SO₃ 溶液,溶液由黄色变成红棕色,析出大量橙黄色 沉淀。

甲同学认为橙黄色沉淀中可能含有 OH-、SO₃-、SO₄-,并设计如下检验方案。

- ① 乙同学认为酸性 KMnO₄ 溶液褪色不能证明橙黄色沉淀中含有 SO²⁻,理由是
- ② 实验证实橙黄色沉淀中含有 SO₃-、不含 SO₄-, 试剂 b、c 分别是_____、
- (4)实验反思: 实验 I 静置 5 \min 后溶液颜色由红棕色变回黄色可能的原因是_____。

参考答案

第一部分

本部分共14题,每题3分,共42分。

题号	1	2	3	4	5	6	INAN
答案	В	С	A	D	В	С	A
题号	8	9	10	11	12	13	14
答案	C	В	D	A	D	D	C

15. (8分)

- (1) (1) Z
 - ② CO₃²⁻ + H⁺ HCO₃⁻
 ③ ac
- (2) 1 2HCO₃⁻ + Fe²⁺ = FeCO₃ \downarrow + CO₂ \uparrow + H₂O
 - ② 1 mol·L⁻¹ NaHCO₃ 溶液中:

生成
$$FeCO_3$$
 沉淀所需 $c_1(Fe^{2+}) = \frac{K_{sp}(FeCO_3)}{c(CO_3^{2+})} = \frac{3.2 \times 10^{-11}}{1 \times 10^{-2}} = 3.2 \times 10^{-9} \text{ mol·} L^{-1};$ 生成 $Fe(OH)_2$ 沉淀所需 $c_2(Fe^{2+}) = \frac{K_{sp}[(Fe(OH)_2)]}{c^2(OH^-)} = \frac{5.0 \times 10^{-17}}{(2 \times 10^{-6})^2} = 1.25 \times 10^{-5} \text{ mol·} L^{-1};$ $c_1(Fe^{2+}) \ll c_2(Fe^{2+})$ (或其他合理答案)

16. (11分)

- (1) $2KHCO_3 \triangleq K_2CO_3 + H_2O + CO_2 \uparrow$
- (2) (1) O
 - ② 接受
- (3) $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \Delta H = -90 \text{ kJ} \cdot \text{mol}^{-1}$
- (4) ① 反应 i 为放热反应,反应 ii 为吸热反应。随温度升高,反应 i 逆向移动程度小于反应 ii 正向移动程 度。
 - ② 吸收 3.45

17. (12分)

- (1) ① :N::N:
 - ② 放热
- (2) 8NH₃ + 6NO₂ 催化剂 7N₂ + 12H₂O
- (3) (1) $NO 3e^- + 2H_2O \longrightarrow NO_3^- + 4H^+$
 - ② NO₂有强氧化性,在工作电极得电子
- - 2) 4NH3 + 4NO + O2 維化剤 4N2 + 6H2O

18. (13分)

- (1) (1) (3)
 - ② $3Cl_2 + Br^- + 6OH^- = 6Cl^- + BrO_3^- + 3H_2O$

J.W. 930 K2

- ④ 蒸发浓缩、冷却结晶、过滤(洗涤、干燥)
- (2) ① 容量瓶

 - ③ 偏高

19. (14分)

- (1) (1) Cu + 2H₂SO₄(\grave{x}) $\stackrel{\triangle}{=}$ CuSO₄ + SO₂ ↑ + 2H₂O
 - ② 饱和 NaHSO;溶液
- (2) (1) $2Fe^{3+} + SO_2 + 2H_2O = 2Fe^{2+} + SO_4^{2-} + 4H^+$
 - ② 溶液变为红棕色 硫酸(或盐酸)
- (3) ① 溶液 A 中含有盐酸,也可能使酸性 KMnO₄ 溶液褪色,干扰 SO₃²⁻的检验
 - ② BaCl₂溶液 H₂O₂ (氯水等合理答案)
- (4) Fe^{3+} 与 SO_2 发生氧化还原反应导致 $c(Fe^{3+})$ 减小;反应生成的 H^+ 导致 $c(SO_3^{2-})$ 减小; $Fe^{3+} + nSO_3^{2-} + mH_2O \Longrightarrow [Fe(SO_3)_n(H_2O)_m]^{3-2n}$ 逆向移动,溶液由红棕色变黄色

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承 "精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

咨询热线: 010-5751 5980

微信客服: gaokzx2018

官方微信公众号: bjgkzx 官方网站: www.gaokzx.com