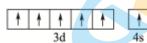
2024 北京石景山高三(上)期末

学 化.

本试卷共10页,100分。考试时长90分钟。考生务必将答案答在答题卡上,在试卷上作答无效。 ww.gac 试结束后,将答题卡交回。

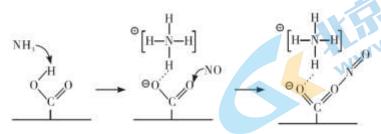
可能用到的相对原子质量: H 1 C 12 N 14 O 16 Mn 55


第一部分

本部分共14题, 每题3分, 共42分。在每题列出的四个选项中, 选出最符合题目要求的一项。

1. 2023年11月15日,亚洲最深井"深地一号"成功开井,获得高产油气 流。我国科研人员采用高温石英(主要成分SiO₂)、钛合金等航天耐高温 材料,实现了地下近万米深度指哪打哪,通过在钻井液中加入竹纤维,在 钻井壁上迅速形成一层保护膜,驯服了有很多微小裂缝的二叠系地层。下 列说法不正确的是

- A. 所获得的油气流是混合物
- B. 竹纤维属于无机非金属材料
- C. 钛合金强度高、耐蚀性好、耐热性高
- D. SiO₂是一种共价晶体
- 2. 下列关于元素性质或原子结构的叙述中,错误的是
 - A. Li、Be、B原子的最外层电子数依次增多
 - B. P、S、CI元素的最高正化合价依次升高
 - C. N、O、F原子的半径依次增大
 - D. Na、K、Rb 原子核外的电子层数依次增多
- 3. 下列化学用语或图示表达正确的是
 - A. HClO 的电子式为H:Cl:O:
 - B. 基态 24Cr 原子的价层电子轨道表示式为 1

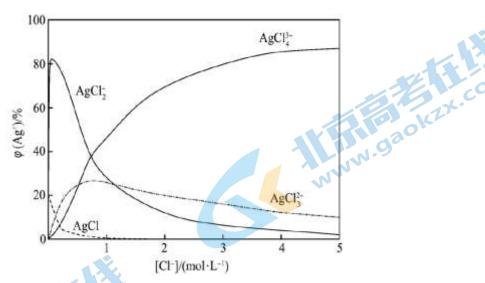

- C. CH₃CH(CH₂CH₃)₂的名称为 2-乙基丁烷
- D. NH₃分子的 VSEPR 模型为 **分**
- 4. 下列物质中,不能用于鉴别 SO₂和 CO₂的是
 - A. 酸性 KMnO₄ 溶液

B. 品红溶液

C. H₂S 溶液

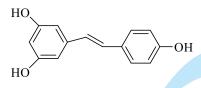
- D. 澄清石灰水
- 5. 下列方程式与所给事实相符的是
 - A. FeS 去除污水中的 Pb²⁺: FeS(s) + Pb²⁺(aq) == PbS(s) + Fe²⁺(aq)
 - B. 氨的水溶液显碱性: NH₃ + H₂O === NH₄ + OH⁻
 - C. 过氧化钠和水反应能生成氧气: $Na_2O_2 + 2H_2O == 2Na^+ + 2OH^- + O_2 \uparrow$

- D. 小苏打的水溶液显碱性: CO₃²⁻ + 2H₂O = H₂CO₃ + 2OH⁻
- 6. 有 NH_3 存在时,活性炭吸附脱除 NO 的反应方程式为 $6NO+4NH_3 = \frac{cc_2 + cc_3}{2} N_2 + 6H_2 O$ 。研究发现:活性炭的表面含有羧基等含氧官能团,活性炭含氧官能团化学吸附 NH_3 和 NO 的机理如下图所示。下列说法不正确的是


- A. NH₄⁺和 NH₃中心原子的杂化方式相同
- B. 吸附时, NH₃中的 N 原子与羧基中的 H 原子发生作用
- C. 室温时, 脱除 30 g NO 转移电子数约为 6.02×10²³ 个
- D. 含氧官能团化学吸附 NH₃、NO 的连接方式与 O、N、C 和 H 的电负性有关
- 7. 下列气体所选除杂试剂和收集方法均正确的是

	气体(杂质)	除杂试剂	收集方法
A	CO ₂ (HCl)	饱和NaHCO3溶液	向上排空气法
В	C ₂ H ₄ (CO ₂)	烧碱溶液	向上排空气法
С	NO (NO ₂)	水	向下排空气法
D	C ₂ H ₂ (H ₂ S)	酸性KMnO4溶液	向下排空气法

8. 对下列事实的解释不正确的是

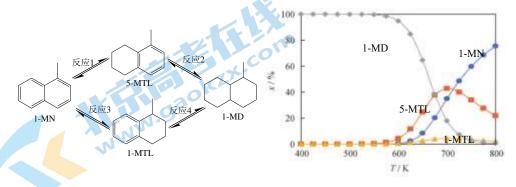

	事实	解释
A	NaCl 溶液呈中性	$c_{\mp}(\Pi^+) - c_{\mp}(\Pi\Pi^-)$
В	相对分子质量相近的一 元醇和烷烃相比,醇的 沸点远远高于烷烃	醇分子中羟基的氧原子与另一醇分子羟基的氢原 子间存在着氢键
С	CuS 的溶解程度远比 ZnS 的溶解程度小	$K_{\rm sp}({ m CuS}) \ll K_{\rm so}({ m ZnS})$
D	氮分子中的氮原子是以 共价三键结合的	当形成氮分子的两个氮原子相互接近时,一个氮原子的 2s 轨道和另一个氮原子的 2s 轨道重叠形成一个共价键,同时它们的 2px 和 2py 轨道也会分别两两重叠形成两个共价键,进而形成共价三键

9. 某同<mark>学</mark>分别向 0.1 mol/L、5 mol/L NaCl溶液中滴加 2滴 0.1 mol/L AgNO₃溶液,均有白色沉淀,振荡后,前者沉淀不消失、后者沉淀消失。查阅水溶液中银氯配合物的分布曲线(以银的百分含量计),如下图所示。下列说法不正确的是

- A. AgCl 在不同浓度的 NaCl 溶液中溶解度不同
- B. 银氯配合物中 Ag+是中心离子, CI-是配体
- C. 上述实验中,白色沉淀消失的离子方程式是 $Ag^++4Cl^ \Longrightarrow$ $AgCl_4^3$
- D. 推测浓盐酸中滴加 2 滴 0.1 mol/L AgNO3 溶液,产生白色沉淀,振荡后沉淀消失
- 10. 利用下列实验药品,不能达到实验目的的是

	实验目的	实验药品							
A	证明 Fe ²⁺ 具有还原性	FeSO ₄ 溶液、酸性 KMnO ₄ 溶液、KSCN 溶液							
В	证明牺牲阳极法保护铁	Fe、Cu、酸化的食盐水、K ₃ [Fe(CN) ₆]溶液							
С	证明 AgI 比 AgCl 更难溶	AgNO3溶液、NaCl溶液、KI溶液							
D	证明醋酸的酸性比碳酸强	醋酸、碳酸钠溶液							
白藜芦醇具有强的抗癌活性,其分子结构如下图所示。下列说法不正确的是									
но он									
A.	白藜芦醇分子中不含手性碳原一								

- A. 白藜芦醇分子中不含手性碳原子
- B. 白藜芦醇存在顺反异构
- C. 1 mol 白藜芦醇可以和 3 mol NaOH 反应
- D. 白藜芦醇和过量浓溴水反应,产物的分子式为 C₁₄H₉O₃Br₇
- 12. 硫酸除锈所产生的酸洗废液中含有较高浓度的硫酸、大量的铁(+2 和+3 价)和一些杂质(Cu²⁺、 H_3AsO_4 等),利用硫酸酸洗废液生产硫酸亚铁的工艺流程如下图所示。下列说法不正确的是

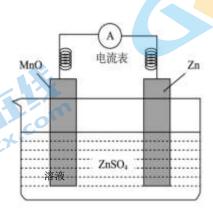


- A. 酸洗废液反应时,废气中的 AsH₃是 H₃AsO₄的还原产物
- B. 加入废铁后,被铁还原的微粒有 H_3AsO_4 、 Fe^{3+} 、 H^+ 和 Cu^{2+} 等
- C. H_2S 被 $KMnO_4$ 氧化成 S 时,氧化剂和还原剂的物质的量之比为 5:2
- D. 用饱和 FeSO₄溶液洗涤晶体,在除去硫酸的同时能减少硫酸亚铁晶体的溶解
- 13. 一种点击反应的原理为 R_1 - N_3 R_1 - N_2 R_2 ,我国科学家利用点击反应原理研制出具有较 高玻璃化转变温度的聚合物C。下列说法不正确的是

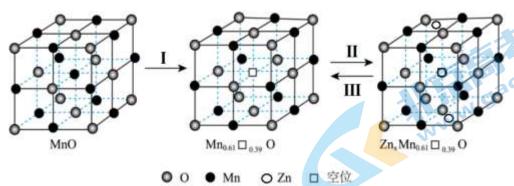
- A. 单体 B 化学式为 C₈H₆O₄
- B. 单体 B 能发生加成、加聚和取代反应
- C. 理论上 1 mol 聚合物 C 在酸性条件下水解可以得到 4n mol 羧基
- D. 按上述点击反应原理 A 和 B 可以生成环状化合物:

14. 下图(左)表示 1-甲基萘(1-MN)加氢饱和反应网络,四个加氢反应均为放热反应(用反应 1、2、 3、4表示)。下图(右)表示反应温度(T)对平衡时反应体系中有机化合物物质的量分数(x/%)的 影响(6 MPa,1-MN 和 H_2 体积比为 1:5 条件下)。下列说法不正确的是

A. 800 K 反应 2 和反应 4 生成 1-MD 的程度很小


- B. 600 K 到 800 K, 反应1的平衡常数逐渐减小
- C. 700 K 反应 1 的平衡常数小于反应 3 的平衡常数
- WWW. 9aokzx.co D. 600 K 到 650 K, 反应 2 中 5-MTL 增加的量大于反应 1 中 5-MTL 减少的量

第二部分


本部分共5题,共58分。

15. (9分)

某种锌电池的结构如下图所示。

- (1) 基态 Mn 原子价层电子排布式是
- (2) SO₄-的空间结构是。
- (3) 锌元素属于 区 (填 "s"、"d"、"ds" 或 "p")。
- (4) 比较 S 原子和 O 原子的第一电离能大小,从原子结构的角度说明理由:
- (5) MnO 电极材料充放电过程的原理如下图所示。

① MnO 晶胞的边长相等均为 a nm, 已知 MnO 的摩尔质量是 M g/mol, 阿伏加德罗常数为 N_A ,

该晶体的密度为 g/cm^3 。(1 cm = 10^7 nm)

② I 为 MnO 活化过程: MnO e = Mn_{0.61}□_{0.39}O + 0.39 Mn²⁺;

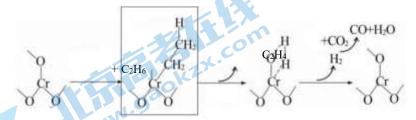
过程(填"放电"或"充电")。 II代表电池

16. (11分)

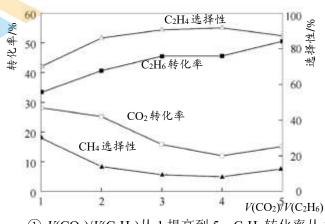
将 CO₂ 作为弱氧化剂用于乙烷脱氢制备乙烯,具有避免乙烷深度氧化、CO₂ 资源化利用等显著优

势。

- (1) ① 查阅资料, 计算 CO2氧化 C2H6 脱氢反应的反应热
 - i. 查阅 的燃烧热数据(填化学式)


ii. 查阅水的汽化热: $H_2O(1) \Longrightarrow H_2O(g)$ $\Delta H_1 = +44.0 \text{ kJ/mol}$

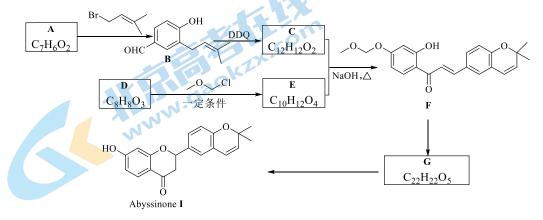
利用上述数据,得如下热化学方程式:


- ② 检验产物有乙烯生成的操作和现象
- (2) 结合键能数据分析 CO2氧化 C2H6 脱氢反应的挑战和难点

键	С—С	С—Н	C=0
键能	247.7	412.4	745
(kJ/mol)	347.7	413.4	745

(3) 推测 Cr^{3+} 催化 CO_2 氧化 C_2H_6 脱氢反应过程示意图如下,补全示意图中画框部分(示意图中未使用 键线式)。

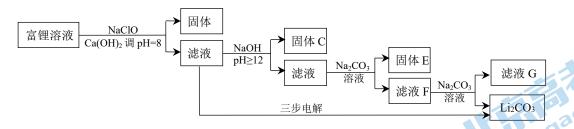
(4) 分析投料体积比对反应的影响(650 ℃, 0.1 MPa, Cr/SiO₂催化剂)



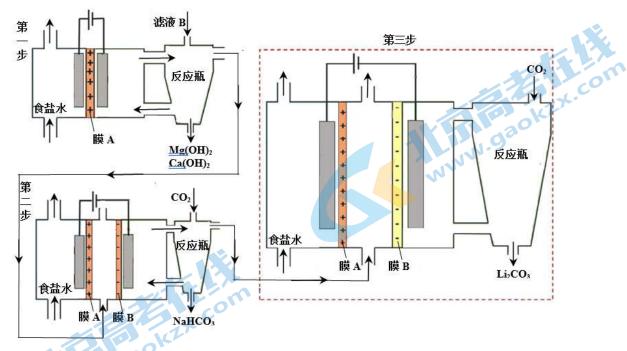
C₂H₄ 选择性: 生成乙 烯的乙烷在全部乙烷 反应物中所占的比例 CH4 选择性: 生成甲烷 的乙烷在全部乙烷反 应物中所占的比例

- ① V(CO₂)/V(C₂H₆)从 1 提高到 5, C₂H₆转化率从 33.3%增加到 50.5%, 简述 C₂H₆转化率增加的 原因。(体积比为3和4时乙烷转化率基本相同)
- ② V(CO₂)/V(C₂H₆) 从 4 提高到 5, 副反应的化学方程式可能是

17. (13分)

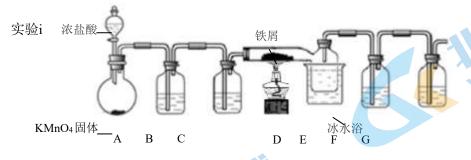

植物提取液 Abyssinone I 能预防和抑制芳香酶的活性,其人工合成路线如下。

已知: i.
$$R_1$$
 DDQ R_1 R_2 ii. R_1 + R_2 -CHO R_2 R_2


- (1) 芳香族化合物A的官能团是。
- (2) A→B的反应类型是。
- (3) C的结构简式是。
- (4)符合下列条件的D的同分异构体有 种。
 - ①能与FeCl3溶液发生显色反应
 - ②能与NaHCO3反应放出CO2
 - ③ 苯环上有 3 个取代基
- (5) D→E 反应的化学方程式是。
- (6) G中含有4个六元环, G的结构简式是。
- (7<mark>)</mark>合成路线中,D→E 和 G→Abyssinone I 两步的作用是
- 18. (11分)

利用沉淀法和电解法从富锂溶液(含 Li^+ 、 Fe^{2+} 、 Fe^{3+} 、 Al^{3+} 、 Mg^{2+} 等阳离子)提纯锂的流程如下。

- (1) 固体 A 含有 Fe(OH)3和 Al(OH)3。
 - ① 第一次加入 Na₂CO₃ 溶液的目的是。
 - ② 写出生成 Fe(OH)3 的离子方程式。
- (2)滤液 B 经三步电解最终生成 Li₂CO₃,原理示意图如下。


① 已知: $Ca(OH)_2$ 的溶度积为 4.7×10^{-6} 。第一步电解,反应瓶中 pH = 13 时,

 $c(\operatorname{Ca}^{2+}) = \underline{\hspace{1cm}}_{\circ}$

- ② 第二步通 CO_2 至 pH 在 $7\sim$ 9,写出生成 $NaHCO_3$ 的离子方程式。
- ③ 膜 B 是_____(填"阳离子交换膜"或"阴离子交换膜");结合阴极电极反应简述第三步生成 Li₂CO₃的原理:。
- 19. (14分)某兴趣小组模拟工业制取 FeCl₃,并对其性质进行探究。

资料: i. 无水 FeCl3 易潮解, 加热易升华。ii. Fe3+与 SO3-可以形成红色配离子。

I. FeCl₃的制取(夹持装置略)

- (1) A 为氯气发生装置。A 中的反应方程式是_____(锰被还原为 Mn^{2+})。
- (2) 装置 F 中的试剂是
- II. FeCl3性质探究

将实验i制取的 FeCl, 固体配成 0.1 mol/L FeCl, 溶液, 进行实验ii和实验iii。

实验ii: 将酸化的 $5 \text{ mL } 0.1 \text{ mol/L FeCl}_3$ 溶液与 $2 \text{ mL } 0.1 \text{ mol/L Na}_2 \text{SO}_3$ 溶液混合,得到红色溶液,一段时间后红色褪去。

- (3)解释实验ii中溶液先变红后褪色的原因。
- (4) 降低 pH 能缩短红色褪去的时间,推测可能的原因。

操作	序号	现象
130	a	蒸发时,试管内有白雾
2 mL FeCl ₃	L.	灼烧时,导出的气体可以使
HI IX	U	NaBr 溶液变黄
蒸发、蒸干、灼烧	c	最终,试管底部留有黑色固体
	2 mL FeCl ₃ 溶液	a 2 mL FeCl ₃ 溶液 b

- (5) 结合化学方程式,解释 a 中的实验现象。
- (6) 小组成员对 b 中的现象进行探究。向得到的黄色溶液中加入苯,振荡静置,上层溶液呈黄色,取上层黄色溶液加入淀粉 KI 溶液,溶液变蓝。甲同学推测实验iii灼烧过程中 FeCl₃ 分解产生了 Cl₂,乙同学认为需要排除 FeCl₃ 被苯萃取的影响,并通过实验证实了甲同学的推测,乙同学的验证过程及现象是。
- (7) 将 c 中黑色固体溶于浓盐酸, 无气泡产生, 小组同学判断黑色固体中含有正二价铁, 其理由是

参考答案

第一部分共14题,每题3分,共42分。

	题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14		
	答案	В	С	В	D	A	С	A	D	С	В	D	С	D	C	OKI	
第二部分共5题,共58分。										r							
15. (9分)(其他合理答案酌情给分)											J	170					

第二部分共5题,共58分。

- 15. (9分)(其他合理答案酌情给分)

 - $(1)(1分)3d^54s^2$ (2)(1分)正四面体形
- (3) (1分) ds
- (4)(2分) 第一电离能 O > S。O 和 S 为同主族元素,电子层数 S > O,原子半径 S > O,原子核对 最外层电子的吸引作用O>S

- 16. (11分)(其他合理答案酌情给分)
 - (1) (2分) ① C₂H₆、C₂H₄和 CO
 - (2分)② 将气体通入溴水,溶液褪色
 - (2) $(2 \, \text{G})$ $(2 \, \text{CO}_2 \, \text{Pr} \, \text{C} = \text{O}$ 键能较高,是反应的挑战;乙烷中 $(2 \, \text{C})$ 的键能大于 $(2 \, \text{C})$ 的键能,所以 $(2 \, \text{C})$ H键的选择活化是难点
 - (3)(1分)
 - $(4)(2分)(1)V(CO_2)/V(C_2H_6)$ 从 1 提高到 3,更多的 CO_2 和乙烷反应生成乙烯,乙烷的转化率增大 V(CO₂)/V(C₂H₆)从 4 提高到 5, 更多的 <math>CO₂ 和乙烷发生副反应生成甲烷,乙烷的转化率 增大

$$(2 \, \%)$$
 ② $C_2H_6 + 2CO_2 = C_{Cr/SiO_2} = CH_4 + 3CO + H_2O$

- 17. (13分)(其他合理答案酌情给分)
 - (1)(2分)醛基(-CHO)、羟基(-OH)
 - (2)(1分)取代反应
 - (3)(2分)
 - (4)(2分)10

(7)(2分)保护D中酮羰基对位的羟基

- 18. (11分)(其他合理答案酌情给分)
 - (1) ① (1分) 将 Ca²⁺转化为 CaCO₃ 沉淀除去
 - ② $(3 \%) 2Fe^{2+} + 4OH^{-} + ClO^{-} + H_2O = 2Fe(OH)_3 \downarrow + Cl^{-}, Fe^{3+} + 3OH^{-} = Fe(OH)_3 \downarrow$
 - (2) ① (2分) 4.7×10^{-4} mol/L
 - ② $(2 \%) \text{ Na}^+ + \text{OH}^- + \text{CO}_2 = \text{NaHCO}_3 \downarrow$
 - ③(1分)阳离子交换膜
 - (2分) 第三步阴极电极反应为 2H₂O + 2e⁻==2OH⁻+H₂↑, Li⁺通过膜 B 迁移至反应瓶中,反应瓶中发生反应 2LiOH + CO₂ ==Li₂CO₃↓+ H₂O
- 19. (14分)(其他合理答案酌情给分)
 - (1) (2 分) 2KMnO₄ + 16HCl == 2MnCl₂+ 5Cl₂ ↑ + 8H₂O + 2KCl
 - (2)(2分)浓H₂SO₄
 - (3) (2 分) Fe^{3+} 与 SO_3^{2-} 既可以形成配离子也可以发生氧化还原反应,氧化还原反应限度大,最终红色褪去
 - (4) (2分) $c(H^+)$ 增大, H^+ 和 SO_3^{2-} 反应,溶液中 $c(SO_3^{2-})$ 降低,红色配离子浓度减少
 - (5) (2分) 加热促进 FeCl₃+3H₂O- Fe(OH)₃+3HCl 平衡正移,挥发的 HCl 形成白雾
 - (6)(2分)向 FeCl3溶液中加入苯,振荡静置,取上层溶液加入淀粉 KI 溶液,溶液未变蓝
 - (7) (2分)实验确认有 Cl_2 生成,Cl 元素化合价升高,黑色固体与盐酸反应没有 H_2 生成,说明没有 0 价 Fe,判断+3 价铁降低到+2 价

北京高一高二高三期末试题下载

京考一点通团队整理了【2024年1月北京各区各年级期末试题&答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期末**】或者点击公众号底部栏目<<mark>试题专区</mark>>,进入各年级汇总专题,查看并下载电子版试题及答案!

Q 京考一点通

