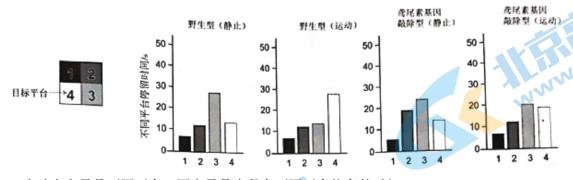
2022 北京丰台高三一模

生物

2022.03

本试卷共 11 页, 100 分。考试时长 90 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分


本部分共15题,每题2分,共30分。在每题列出的四个选项中,选出最符合题目要求的一项。

- 1. 膜联蛋白是一类重要的膜修复蛋白,主要引导破损细胞膜的延伸和内卷,促进膜的融合。下列叙述不正确的是
- A.组成细胞膜的主要成分是脂质和蛋白质
- B.膜联蛋白的合成场所是内质网和高尔基体
- C.膜损伤会影响细胞的物质运输和信息传递
- D.细胞膜修复对于维持细胞完整性至关重要
- 2. 细胞代谢中能量转换非常重要,下列叙述正确的是
- A.动、植物细胞的能量转换器分别是线粒体和叶绿体
- B.滑雪时葡萄糖中的化学能全部转化为热能以维持体温
- C. 光反应阶段储存的能量可用于暗反应中 CO2 的固定
- D.ATP 水解释放的能量可用于离子逆浓度梯度跨膜运输
- 3. 研究发现肿瘤细胞中谷氨酰胺合成酶(GS)高表达,GS通过推动有丝分裂中期到后期的转化促进细胞增殖。下列叙述不正确的是
- A.肿瘤细胞的细胞周期通常比正常细胞短
- B.有丝分裂中期到后期的转化中 DNA 数量加倍
- C.肿瘤细胞增殖过程不会发生同源染色体分离
- D.研制 GS 合成抑制剂可望治疗恶性肿瘤
- 4. 现有野生型籼稻品种甲和品种乙,甲用 γ 射线诱变处理后,经筛选获得稀穗突变体丙。丙分别与甲和乙杂交,统计 F_2 穗形,结果如下表。以下分析不正确的是

杂交组合	F_2						
	总数	正常株	突变株				
甲×丙	118	91	27				
Z×丙	1132	860	272				

- A 穗形性状中稀穗对正常穗为隐性
- B.控制穗形的基因遵循基因分离定律
- C.F₁测交后代中正常株: 突变株≈1: 1
- D.控制甲和乙穗形的基因是非等位基因

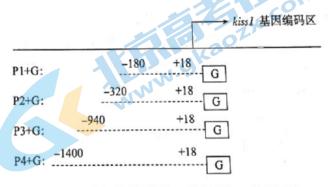
- 人类 Y 染色体末端的 SRY 基因能激活睾酮合成相关基因的表达,睾酮在 5α-还原酶的作用下转化为二氢睾酮, WW.9kaozx.com 促使未分化的性腺发育成睾丸。下列叙述不正确的是
- A.SRY 基因所在染色体片段缺失,后代可能出现 XY 的女性
- B SRY 基因所在染色体片段移接,后代可能出现 XX 的男性
- C. 5α -还原酶基因缺陷的 XY 个体, 雄性生殖器官发育不良
- D.XYY 男性染色体异常是母亲减数分裂产生异常卵细胞所致
- 6. 新冠病毒的遗传物质 RNA 表达后,经剪切加工才能形成功能蛋白。抗新冠病毒药物 M 是一种核苷类似物,能 在新冠病毒复制时掺入新合成的 RNA,抑制病毒增殖。下列叙述不正确的是
- A.阻止蛋白酶剪切加工能保证功能蛋白的完整性
- B.新冠病毒进入人体后引起体液免疫和细胞免疫
- C.新冠病毒 RNA 的复制和表达均发生在宿主细胞中
- D.感染病毒的中晚期患者使用药物 M 治疗效果可能不佳
- 7.腺苷是一种重要的促眠物质,腺苷与受体结合后促进睡眠。咖啡因与腺苷竞争受体,使神经元兴奋,起提神作 用。下列判断不合理的是
- A. 1分子 ATP 脱去 2个磷酸基团后生成腺苷
- B.咖啡因刺激神经元 Na+内流产生动作电位
- C.咖啡因与腺苷结构相似,但无腺苷的作用
- D.腺苷与受体结合后,咖啡不能起提神作用
- 8. 鸢尾素是运动时释放的一种小分子肽类激素。为研究鸢尾素与学习认知之间的关系,科学家构建了鸢尾素基因 敲除小鼠,运动训练或静止后,记录小鼠在水迷宫不同平台上停留的时间(在目标平台上停留时间与学习记忆能力 ww.gkaozx.com 正相关),结果如下图。相关叙述不正确的是

- A.实验自变量是不同平台,因变量是小鼠在不同平台停留的时间
- B.运动后基因敲除小鼠在目标平台停留时间明显少于野生型小鼠
- C.运动能提高小鼠体内的鸢尾素含量进而提高学习和记忆的能力
- D.鸢尾素需与相应受体结合后才能发挥调节神经系统功能的作用
- 9. 取长势相同且直立生长的燕麦胚芽鞘若干,切去尖端,分组进行实验如下表。下列有关该实验的分析正确的是

组别	处理	条件	现象
I	含有生长素的琼脂块放在切去尖端的胚芽鞘的一侧	黑暗	胚芽鞘朝对侧弯曲生长,弯曲角度是 (10.3±0.71)度

**	含有与I组相同浓度生长素的琼脂块放在切去	小儿四	胚芽鞘朝对侧弯曲生长,弯曲角度是			
	尖端的胚芽鞘的一侧	光照	(8.6±0.64) 度			
III	切去尖端的燕麦胚芽鞘		直立生长			
A 平空加	制生长素以极性运输的方式运输到胚芽鞘					
		Kack				
B.光照提	高生长素的活性从而影响胚芽鞘的生长		1.4.9.			
C.去掉尖	端后胚芽鞘内的生长素促进尖端下部生长		MINT			

- A.黑暗抑制生长素以极性运输的方式运输到胚芽鞘
- B.光照提高生长素的活性从而影响胚芽鞘的生长
- C.去掉尖端后胚芽鞘内的生长素促进尖端下部生长
- D.尖端下部生长速度与切去尖端后的时间正相关
- 10. 某学校生态农业创客小组设计了如图所示的"鱼菜共生"系统。对该系统的描述不正确的是



- A.虹吸系统和沉水水泵促进系统的物质循环
- B.蔬菜固定的太阳能约有 10%~20%流入鱼类
- C.系统需要从外部获得能量补给才能正常运转
- D.该系统应用了生态工程的自生和循环等原理
- 11. 关于高中生物学实验中实验材料的处理及目的, 叙述正确的是
- A.新鲜肝脏研磨后释放过氧化氢酶可提高反应活化能
- B.菠菜叶片研磨时加入无水乙醇用于叶绿体色素的分离
- C选择紫色洋葱为材料观察细胞有丝分裂时不需要染色
- D.将土壤浸出液与落叶混合可探究土壤微生物的分解作用
- 12. 为研究不同光质对草莓无菌苗叶片形成愈伤组织的影响,进行相关实验,结果如下表所示。以下分析正碗的是

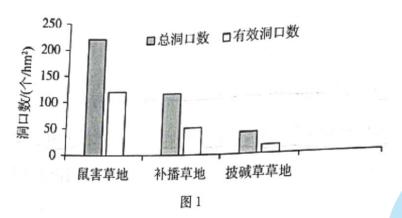
处理	最早出愈伤 组织时间 / 天	诱导率 / %	愈伤组织特征	愈伤组织再分化趋势
白光	7	50.7	浅绿色、紧实	分化芽较多,长势较快
红光	5	61.0	黄绿色、疏松	分化早,幼芽徒长
蓝光	12	39.3	黄绿色、疏松	分化晚,分化芽少,长势健壮
红光: 蓝光=2: 1	7	57.3	浅绿色、紧实	分化芽较多,长势快

- A.形成愈伤组织过程中细胞结构和功能未发生变化
- B.愈伤组织培养基中含水、无机盐、蔗糖等营养物质
- C.蓝光处理促进愈伤组织的光合作用进而提高诱导率
- D.红光处理能更有效地提高愈伤组织再分化的效果
- 13. 下列生物工程技术中,不需要用到胚胎移植技术的是
- A.利用乳腺生物反应器生产药物蛋白
- B.利用本地黄牛克隆繁殖优质高产奶牛

- C.利用试管婴儿技术辅助有生育困难的夫妇
- D.利用细胞培养技术获得人造皮肤移植给烧伤患者
- 14. 酿酒酵母常用于制作葡萄酒、面包等,某同学利用购买的酿酒酵母制作白葡萄酒。下列操作不正确的是 JWW.9kaozx
- A.购买的干粉菌种需活化后再接种
- B.将白葡萄清洗后捣碎有助于发酵
- C.定期用斐林试剂检测发酵产物
- D.接种量、温度等影响放气频率
- 15. 小鼠肿瘤转移抑制基因(kissl基因)仅在特定组织中表达。在雌激素诱导下,细胞内信号转导系统可以与 kissl 基因启动子的特定区域结合,激活 kissl 基因的转录。研究者扩增了 kissl 基因启动子不同长度的片段 P1、P2、P3 和 P4,分别构建这些片段与绿色荧光蛋白基因(G)融合的载体,转入体外培养的特定细胞中,在培养液中添加雌激 素,以确定不同片段的转录活性。下列叙述不正确的是

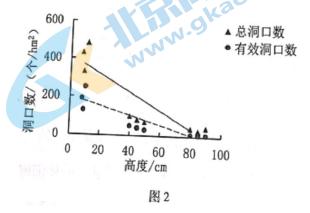
注: 数字代表碱基的位置, -代表上游, +代表下游

- A.PCR 获取不同长度片段时每组所用的引物有一个是统一的
- B.应选择有 kissl 基因且能表达的小鼠细胞作为转化的受体细胞
- C.在细胞中表达出绿色荧光强度弱的片段具有较高的转录活性
- D.该启动子能响应外源激素信号可在基因工程中发挥重要作用


第二部分

本部分共6题,共70分。

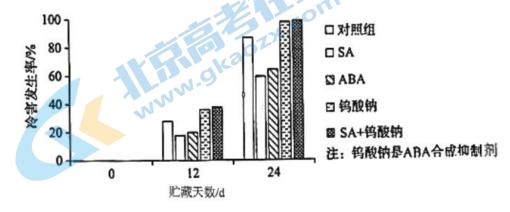
16. (11分)


高原鼠兔是广泛分布于青藏高原上的一种小型啮齿动物,其挖洞造丘、啃食牧草可能引起草地退化。科研人员 报通过植被调控来进行生态防控。

- (1) 按生态系统的组成成分划分, 高原鼠兔属于
- (2) 披碱草是退化草地改良中常用的草种。科研人员在高原鼠兔分布密集草地建立围栏样地.设置鼠害草地、补播 草地(即鼠害草地部分区域替换成披碱草)和人工披碱草草地三种样地,研究草地植物群落结构的变化对高原鼠兔 种群密度的影响。
- ①通过测定有效洞口数来表示鼠兔的种群密度。图 1 结果表明,种植披碱草能 高原鼠兔的种群密度。

②高原鼠兔的食物组成为紫花针茅等植物。据此推测,补播草地和披碱草草地中高原鼠兔种群密度变化的原因是

WWW.9kaozx.cc



(4)上述研究表明,披碱草群落对高原鼠兔具有一定的生态防控效果。大量种植披碱草也可能给草原生态系统带来不利影响,其原因是____。

17. (12分)

近年来发现,水杨酸(SA)和脱落酸(ABA)在植物抗冷胁迫的过程中起重要的调节作用。研究者以李果实为材料研究了 SA 和 ABA 在采后果实抗冷害过程中的作用。

- (1) 李果实在低温下贮藏时,细胞膜脂由液态变为凝胶态,细胞膜_____增大,导致胞内离子等物质渗出,果实代谢失衡,最终出现果皮凹陷、褐变等冷害症状。
- (2) 将李果实随机分组,采用不同溶液浸泡后晾干,置于-80℃贮藏一段时间,统计冷害发生率,部分数据如下图 所示。

①本实验中对	照组应使用	浸泡李果实。对照约	组中由于	的	作用导致冷害发	定生率略低于钨酸钠
组。						1.13
②结果表明:	,且_	的作用依赖于	·°	,		2 Jon
(3) 进一步指	深讨 ABA 抗冷害的	J调控机制时,发现 SA 和	ABA 能够显著		对自由基的清阳	余能力,从而减轻
对细胞膜的伤	害。H ₂ O ₂ 能参与自	目由基的调控过程,延缓冷	冷 害的发生。据	居此提出假	说:ABA 通过	H ₂ O ₂ 的信号途径起
		处理并预期实验结果, 填			17/2	
A.SA B.H ₂ O) ₂ C. SA+H ₂ O ₂ 清	f除剂 D. ABA+H ₂ O ₂ 清	ş除剂 E. 钨酸	納+H ₂ O ₂	10	
组别	处理	预期实验结果				
1	对照组	冷害发生率:				
2	ABA	第2组低于第1组				
	ADA	第3组 <u>②</u>				
3	1	第4组 <u>④</u>				
4	3	130				
18. (12分)	A NW					
研究 <mark>发</mark> 现	,很多免疫细胞表	面存在神经递质受体,它	们本身也可以	、合成和分泌	必多种神经递质	〔(如 5-羟色胺)来
调节免疫细胞	的活性。					
(1) 细胞毒性	生T细胞能合成 5-美	羟色胺并结合自身表面的	受体,增强自	身	肿瘤细胞的能	6力,体现了免疫系
统的	_功能。免疫系统与	与神经系统、内分泌系统	共同维持内环境	竞	°	
(2) 单胺氧化	と酶 A(MAOA)	是 5-羟色胺的降解酶。研	究发现黑色素料	廇小鼠的细	田胞毒性 T 细胞	中 Maoa 基因异常
高表达。为探	明 Maoa 基因表达	与肿瘤细胞增殖的关系进	行实验。图1	结果显示,	, ì	说明 Maoa 基因表达
促进黑色素瘤	细胞增殖。					con
750	_	→ 野生型				301%
	Ţ.	-→-· Maoa基因敲除型		1	13.0	说明 Maoa 基因表达
500	/		300	an hid	NWW	
€ 500 数数 数数 数数 250			200		enji ka pe	
禦 盐 250	11		200 - 100 -			
	//		ლ 100 -			
0	-KA	The second second	0		-	
0	3 7 10 14 天数/d	College	PD-1抗体 — MAOA抑制剂 —	- + + -	+ +	
	图1	OZX.	41.14.4714	图 2		

(3)进一步研究 MAOA 调控细胞毒性 T细胞的机理,用肿瘤抗原激活细胞毒性 T细胞。野生型小鼠细胞毒性 T细胞中控制 5-羟色胺合成的 *Tphl* 基因和控制 5-羟色胺降解的 *Maoa* 基因表达都显著增强;而 *Maoa* 基因敲除小鼠细胞毒性 T细胞中______,细胞活性增强。

(4) 黑色素瘤细胞过表达 PD-L1 来结合 T 细胞表面的 PD-1,抑制其活化。PD-1 抗体是治疗肿瘤的常用药物,联合使用 MAOA 抑制剂和 PD-1 抗体治疗肿瘤,实验结果如图 2。结果表明,单独使用 MAOA 抑制剂的抗癌效果

_____PD-1 抗体,两者表现出______关系。

- (5) 结合以上研究,再提出一种治疗肿瘤的思路。
- 19. (11分)学习以下材料,回答(1)-(4)题。

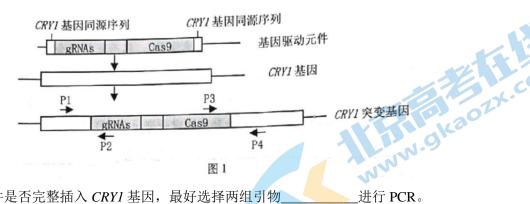
光合作用的趋同进化

不同物种独立演化出相同或相似的性状称为趋同进化。在生命进化的过程中,趋同进化几乎无处不在,如水生动物的体型、飞行动物的翅膀、景天科植物的肉质茎叶、花朵的颜色和气味等。

在大多数植物的光合作用中,大气 CO_2 直接被卡尔文循环中的酶 Rubisco 固定。然而,Rubisco 对 CO_2 和 O_2 都有亲和性,当 Rubisco 结合 O_2 而不是 CO_2 时,就会发生光呼吸作用,导致能量消耗。

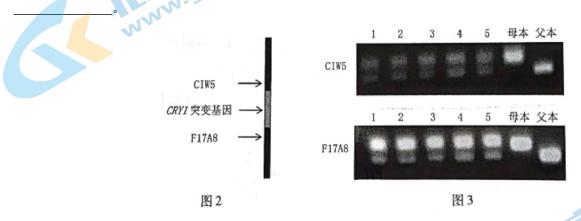
为了避免这个问题,陆生植物进化出了多种碳浓缩机制,比如 C₄光合作用和景天酸代谢(CAM),可以在 Rubisco 固定 CO₂之前在细胞内浓缩 CO₂,从而使得光合作用更加高效。很多生活在炎热和干燥环境中的植物都会 使用其中一种碳浓缩机制。两种碳浓缩机制都使用相同的酶,要求把大气 CO₂的捕获和固定分开,但是分开的方式 又有着本质的不同。

大部分 C_4 植物是在叶肉细胞和维管束鞘细胞中分别进行 CO_2 的捕获和固定。反应的空间分离导致维管束鞘细胞中 CO_2 浓度比叶肉细胞增加 10 倍,从而确保在 CO_2 受限的条件下进行高效的碳固定。 C_4 植物通常生长在强光环境中,光合作用速率在所有植物中最高,如玉米、甘蔗等。


在 CAM 植物中,碳捕获和固定的反应在时间上是分离的。首先,在晚上(此时蒸腾速率低)捕获 CO_2 ,然后转变成苹果酸存储在液泡中。到了白天,气孔关闭,苹果酸脱羧,使得叶绿体中 Rubisco 周围 CO_2 浓度升高。大量的苹果酸存储需要更大的液泡和细胞,因此 CAM 植物一般具有肉质的茎叶。

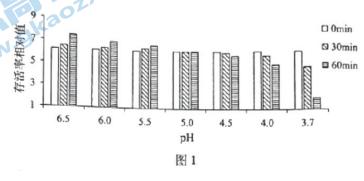
利用细胞和时间的差异来区分碳浓缩机制的生化过程是复杂的,基因组时代的来临促进了对这些复杂性状的新一轮遗传学研究,从而为了解光合作用的进化提供更精确的证据。

- (1) 植物光合作用的光反应产物______转移至_____(场所)参与暗反应。不同植物碳浓缩机制的差异是长期自然选择形成的对环境______的结果。
- (2) 概括植物捕获和固定大气 CO₂的方式: ①_________; ②__________; ③捕获和固定在时间上分离。
- (3) 请从光合作用角度分析沙漠植物仙人掌具有肉质茎的优势。
- (4) 结合文中信息分析,下列可作为光合作用趋同进化的证据有
- A.从蓝细菌到开花植物捕获光能的装置都是叶绿体
- B.为避免光呼吸, 陆生植物进化出多种碳浓缩机制
- C. C4植物和 CAM 植物都利用酶 Rubisco 来固定 CO2
- D. C4植物和 CAM 植物都把 CO2的捕获和固定分开
- 20. (12分)


基因驱动是指特定基因有偏向性地遗传给下一代的自然现象。科学家借助 CRISPR / Cas9 基因编辑技术,研发出人工基因驱动系统,并在拟南芥和蚊子等生物中实现了外部引入的基因多代遗传,在作物快速育种、根除疟疾等方面具有广阔的前景。

(1)为研发拟南芥蓝光受体 *CRYI* 基因驱动系统,科学家首先构建了基因驱动元件,导入拟南芥细胞,在细胞中表达 Cas9 / gRNA 复合物,其中 gRNA 按照______原则来识别和结合 DNA 特定序列,并引导 Cas9 蛋白酶切断 DNA 双链,将基因驱动元件精确插入到一条染色体上的 *CRYI* 基因中(如图 1),获得 *CRYI* 突变基因,并利用同源定向修复功能,使另一条同源染色体上也插入基因驱动元件,从而获得 *CRYI* 基因纯合突变体。

进行 PCR。


- A. P1、P2和P3、P4
- B. P1、P3和P2、P4
- C. P1、P4和P2、P3
- ②用 CRYI 基因纯合突变体作为母本与野生型父本杂交, F₁中有多达 8%的植株为纯合突变体。请解释纯合突变体 产生的原因。
- ③分子标记是核 DNA 中的简单重复序列, 重复次数在不同个体和品种间有较大可变性。从 F₁ 中选取 5 株纯合突变 体,根据 CRYI 基因上下游的分子标记 CIW5 和 F17A8 (如图 2)设计引物,进行 PCR,电泳结果如图 3,可知除 CRYI 基因外的其他基因均来自双亲,判断依据是

- (2) 用基因驱动技术改造传播疟疾的按蚊 X 染色体上的 A 基因,获得 a 基因,含 a 基因的精子不能成活。用改造 后的雌蚊突变体与野生型雄蚊交配,子一代雌蚊的基因型是______,子一代相互交配,子二代的性别是
- 。若将基因驱动雌蚊释放到疟疾疫区,疟疾发病率将会
- 21. (12分)

乳酸菌耐酸能力对菌株自身生长、在人体胃肠道微环境中发挥益生作用至关重要。

- (1)乳酸菌通过呼吸作用在_____中合成乳酸,导致细胞内和生存环境 pH 逐步降低,抑制细胞生长。
- (2) 为探究乳酸菌的耐酸机制,研究者进行了如下实验:
- ①将乳酸菌在不同 pH 的液体培养基中 37°C静置厌氧培养,并在 0min、30min、60min 分别取样,采用 法进行活菌计数,结果如图1所示。

8 / 11

酸耐受反应是乳酸菌应对酸胁迫时在细胞代谢等方面发生的适应性变化,是一种自我保护机制。根据上述实验结果,初步选择酸耐受反应的胁迫条件为 pH5.0,依据是_____。为进一步确定,研究者在 pH6.5 和 5.0 条件下培养乳酸菌,然后进行 pH3.7 酸致死处理后统计存活率,若______,则可确定酸耐受反应的胁迫条件为 pH5.0。

②研究者发现,经酸胁迫后,乳酸菌的 hpk 基因表达上调。为研究 hpk 基因的功能,利用 S 质粒构建 hpk 基因突变的乳酸菌菌株。S 质粒上有红霉素抗性基因,但是 S 质粒不能在宿主细胞中复制,只有交换到宿主 DNA 上才能传代。请从下列各项中选择正确的实验步骤并进行排序

A.转化乳酸菌

- B.根据 hpk 基因的序列信息获得部分片段缺失的 hpk
- C.根据 hpk 基因的序列信息获得完整的 hpk
- D.将不同的乳酸菌涂布在含乳酸的固体培养基上静置培养
- E.将不同的乳酸菌涂布在含红霉素的固体培养基上静置培养
- F.将目的基因与S质粒连接构建重组S质粒

从上述培养基上初步筛选出来的单菌落中提取细菌基因组 DNA PCR 特异扩增红霉素抗性基因后电泳,结果如图 2。据图可知,_____是对红霉素有一定耐受能力的乳酸菌,而不是目标转化菌。

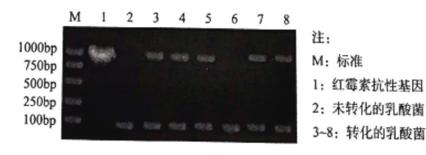


图 2

(3) 为验证 hpk 突变体的耐酸能力,应对野生乳酸菌和突变体进行的实验处理和预期的结果是_

参考答案

第一部分(共15题 每题2分 共30分)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
]	В	D	В	D	D	A	A	A	C	В	D	В	D	С	С

第二部分(共6题 共70分)

- 16. (11分)
- (1) 消费者
- (2) ①降低
- ②按碱草与原有植物形成竞争关系,导致高原鼠兔可利用的食物资源减少
- (3) 空间/垂直结构和水平

鼠兔种群密度减小 视野开阔

- (4) 物种丰富度下降,生态系统的稳定性降低
- 17. (12分)
- (1) 通透性(选择透过性)
- (2)①等量蒸馏水

内源 ABA

②SA 和 ABA 均能提高李果实的抗冷性(SA 和 ABA 均能降低冷害发生率(且随时间作同效果增强))

SA

ABA

(4)(1)D ②高于第2组(接近第1组)

③E ④与第2组相似(低于第1组)

18. (12分)

(1) 识别、(接触)、裂解

免疫监视

稳态

- (2) Maoa 基因敲除小鼠的肿瘤体积显著小于野生型小鼠(Maoa 基因敲除小鼠的肿瘤体积增长速度比野生型慢
- (3) *Tph1* 基因表达增强, *Maoa* 基因表达减弱, 5-羟色胺浓度升高(5-羟色胺合成增强, 降解减弱, 5-羟色胺浓度显著升高)
- (4) 低于 协同
- (5) 例如: 使用 PD-L1 抗体; 促进 Tph1 基因表达; 抑制 Maoa 基因表达: 补充 5-羟色胺等
- 19. (11分)

(1)ATP、NADPH

叶绿体基质

适应

- (2) ①捕获后直接固定
- ②捕获和固定在空间上分离(在不同细胞内捕获和固定)
- (3) 仙人掌肉质茎有更大的液泡和细胞,可以储存大量的苹果酸,为光合作用提供更多 CO₂(4)BCD
- 20. (12分)
- (1) 碱基互补配对
- (1)**A**
- ② F_1 中来自<mark>母</mark>本的基因驱动序列通过同源定向修复,使来自父本的同源染色体上也插入 CRYI 基因驱动元件
- ③电泳结果中五株 F₁均同时具有与父本和母本一致的分子标记条带
- $(2)X^aX^a$, X^AX^a

全雄

下降

破坏按蚊种群的性别比例,导致出生率下降,种群密度下降

21. (12分)

- (1) 细胞质
- (2) ①稀释涂布平板 乳酸菌存活率不增不减

与 pH6.5 组相比, pH 5.0 组乳酸菌的存活率明显提高

②BFAE 样品 6

③实验处理:分别先 pH 5.0 培养后置于 pH 3.7 的培养液中预期结果:突变体的存活率明显低于野生型

www.gkaozx.com

www.gkaozx.com

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承 "精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

官方微信公众号: bjgkzx 咨询 官方网站: www.gaokzx.com 咨询

咨询热线: 010-5751 5980 微信客服: gaokzx2018