北京市西城区 2017 — 2018 学年度第一学期期末试卷

高二生物

2018. 1

本试卷分 A、B 卷, 共 12 页, 共 120 分。考试时长 100 分钟。考生务必将答案写在答题纸上,在试卷上作答无 效。考试结束后,将本试卷和答题纸一并交回。

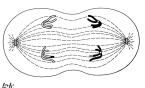
A券

第一部分 (选择题 共50分)

每个题目的四个选项中只有一个符合要求

- 一、选择题(每个题目的四个选项中只有一个符合要求,共50分)
- 1. 下列各项不属于相对性状的是
 - A. 羊的黑毛和兔的白毛
- B. 酵母菌菌株耐热与不耐热
- C. 人的右利手和人的左利手
- D. 果蝇的红眼与白眼
- 2. 在豌豆杂交实验中,为防止自花传粉,下列操作正确的是
 - A. 将花粉涂在雌蕊柱头上
- B. 除去未成熟花的雄蕊
- C. 采集另一植株的花粉
- D. 人工传粉后套上纸袋
- 3. 下列关于杂合子的叙述不正确的。
 - A. 至少有一对等位基因
- ◇B. 自交后代发生性状分离
- C. 自交后代仍是杂合子
- D. 能产生多种类型的配子

- 4. 遗传的基本规律是指
 - A. 性状的传递规律
- B. 蛋白质的传递规律
- C. 基因的传递规律
- D. 染色体的传递规律
- 5. 家兔的黑毛对褐毛为显性。欲鉴定一只黑毛兔是否为纯合子,与它交配的兔最好选用


 - A. 纯合黑毛兔 B. 杂合黑毛兔
- C. 褐毛兔
- D. 白毛兔
- 6. 暹罗猫刚出生时全身的毛为白色,而肢体的末端部分在独立活动以后,通常转为黑色。这一现象
 - A. 肢体末端的基因发生突变
- B. 毛色由基因型与环境共同决定
- C. 基因组成随环境发生变化
- D. 末端部分的毛色只由温度决定
- 7. 正常情况下,女性卵细胞中常染色体的数目和性染色体为
 - A. 44, XX
- B. 44, XY
- C. 22, X
- D.
- 8. 肺炎双球菌转化实验中, 使R型细菌转化为S型细菌的转化因子是
 - A. 荚膜多糖

- B. S型细菌的蛋白质
- C. R型细菌的 DNA
- D. S型细菌的 DNA
- 9. 右图为某动物细胞分裂示意图。该细胞处于
 - A. 减数第一次分裂后期
- C. 减数第二次分裂后期
- 丝分裂中期

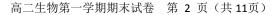
- 10. 通常情况下,一个 DNA 分子复制完成后,新形成的 DNA 子链
- B. 是 DNA 母链的片段
- D. 与 DNA 母链相同, 但 U 取代 T
- 11. 孟德尔购买了34个不同的豌豆品种进行了两年的试种,最后保留了22个品种,因为无论自花授粉还是同品种内 不同个体异花授粉,这些品种的性状都能保持稳定。下列相关叙述正确的是
 - A. 试种中异花授粉产生的后代均为杂合子
 - B. 孟德尔可利用花园内的蜜蜂为豌豆传粉
 - C. 可获得用于杂交实验的各种性状的纯种
 - D. 试种期间异花授粉时不需要给母本去雄
- 12. 经典遗传学奠基人孟德尔研究了豌豆 7 对相对性状的遗传,随着遗传学的发展,科学家已经将控制这些性状的基 因定位于豌豆的染色体上,结果如下表所示。若要验证孟德尔自由组合定律,最适宜选取的性状组合是

高二生物第一学期期末试卷 第 1 页(共11页)

基因所在染色 体编号	1号	4 号	5 号	7号
基因控制的相 对性状	花的颜色 子叶的颜色	花的位置 豆荚的形状 植株的高度	豆荚的颜色	种子的形状

- A. 花的颜色和子叶的颜色
- B. 豆荚的形状和植株的高度
- C. 花的位置和豆荚的形状
- D. 豆荚的颜色和种子的形状
- 13. 玉米第九号染色体上的糯性基因(wx)在胚乳中表达,也在花粉中表达(糯性淀粉遇碘呈棕红色)。取一株玉米成 熟的花粉,用碘液进行检测,结果约 50%的花粉显蓝色、约 50%的花粉显棕红色。下列说法
 - A. 非糯性和糯性是一对相对性状
- B. 非糯性基因不在九号染色体上
- C. 该株玉米的基因型一定为杂合子
- D. 该检测结果可证明基因分离定律
- 14. 一株基因型为 AaBb 的小麦自交,这两对基因独立遗传。后代可能出现的基因型有
 - A. 2种
- B. 4种
- C. 9种
- D. 16种
- 15. 人类的白化病是常染色体隐性遗传病,右图为一个有白化病患者家系的系谱图。以下关于此家系的叙述中,正确 的是
 - A. 个体 7 是携带者的概率是 1/2
 - B. 个体 4 的父母都是白化病患者
 - C. 个体 2 一定不携带白化病基因
 - D. 个体 3 一定是白化病基因携带者

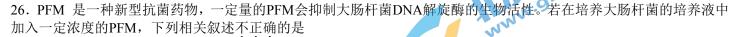
- 16. 人类的甲型血友病是由X染色体上的凝血因子 VIII 基因发生隐性突变所致的凝血障碍。关于该病的遗传,下列说 法不正确的是
 - A. 患血友病的女性较少见
- B. 女患者的女儿一定患病
- C. 女患者的父亲一定患病
- D. 男患者的女儿不一定患病
- 17. 紫眼是果蝇的隐性突变性状。紫眼雌果蝇与野生型红眼雄果蝇交配产生若干后代,观察并分析其子代的性状表现, 能说明紫眼基因位于 X 染色体上的结果是
 - A. 子代均为红眼


- B. 子代均为紫眼
- C. 子代雌果蝇均为红眼
- D. 子代雄果蝇均为紫眼

- 18. 同源染色体是指
 - A. 一条染色体复制形成的两条染色体
 - B. 减数分裂过程中配对的两条染色体
 - C. 形态、特征相似的两条染色体
 - D. 分别来自父方和母方的两条染色体
- 19. 四分体是指细胞在减数分裂过程中
 - A. 一对同源染色体配对时的四个染色单体
 - B. 互相配对的四条染色体
 - C. 大小形态相同的四条染色体
 - D. 两条染色体的四个染色单体
- 20. 某动物的基因型为 AaBb, 这两对基因的遗传符合自由组合定律。若它的一个精原细胞经减数分裂后产生的四个精 细胞中,有一个精细胞的基因型为AB,那么另外三个精细胞的基因型分别是
 - A. Ab, aB, ab

B. AB, ab, ab

C. ab, AB, AB


- D. AB, AB, AB
- 21. 玉米的卵细胞含有 10 条染色体,分裂形成它的初级卵母细胞中染色体、DNA、染色单体数目依次是
 - A. 20, 20, 20 B. 20, 40, 40
- C. 20, 40, 20 D. 10, 20, 20
- 22. 进行有性生殖的生物,对维持其前后代体细胞中染色体数目恒定起重要作用的生理活动是
 - A. 有丝分裂与受精作用
- B. 细胞增殖与细胞分化
- C. 减数分裂与有丝分裂
- D. 减数分裂与受精作用
- 23. 下列物质从复杂到简单的结构层次关系是
 - A. 染色体→DNA→脱氧核苷酸→基因
 - B. 染色体→DNA→基因→脱氧核苷酸

- C. 基因→染色体→脱氧核苷酸→DNA
- D. 染色体→脱氧核苷酸→DNA→基因
- 24. 右图为 DNA 分子平面结构模式图,据图信息判断,下 列叙述正确的是
 - A. 1表示磷酸基团, 1、2、3整体称为核糖核苷酸
 - B. 若4表示腺嘌呤,则3表示胸腺嘧啶
 - C. DNA分子中3与4通过磷酸二酯键连接
 - D. DNA分子被彻底氧化后,能产生含氮废物的是2
- 25. 下列关于真核生物基因的叙述中,正确的是
 - A. 相邻的三个碱基组成一个密码子
- B. 能转运氨基酸

C. 能与核糖体结合

D. 能转录产生 RNA

- A. 加入PFM后,大肠杆菌细胞中的DNA复制发生障碍
- B. PFM可以将真核细胞的细胞周期阻断在分裂间期
- C. 一定浓度的PFM不会影响大肠杆菌的分裂
- D. 推测PFM对癌细胞的增殖有一定抑制作用。
- 27. 研究发现,人类免疫缺陷病毒(HIV)携带的 RNA 在宿主细胞内不能直接作为合成蛋白质的模板。结合下图所示 "中心法则"分析,下列相关叙述不正确的是

- A. 子代病毒蛋白质外壳的合成至少要经过④、②、③过程
- B. 进行4、1、2、3过程的原料来自于宿主细胞
- C. 通过④形成的DNA可以整合到宿主细胞的染色体DNA上
- D. ②、③过程分别在宿主细胞核内和病毒的核糖体上进行
- 28. 关于基因控制蛋白质合成的过程,下列叙述正确的是
 - A. 细菌的基因转录时, DNA 分子的两条单链可同时作为模板
 - B. DNA 聚合酶和 RNA 聚合酶的结合位点分别在 DNA 和 RNA 上
 - C. 几乎所有生物共用一套遗传密码
 - D. 一个氨基酸只能对应一种密码子
- 29. 人体受到病毒感染后,细胞会产生干扰素刺激蛋白(ISGs),它能够直接抑制病毒的增殖,而且还会影响人体细胞 核内干扰素基因表达量,进而发挥抗病毒作用。据此分析,下列叙述不正确的是
 - A. ISGs合成场所是核糖体
- B. ISGs能够影响干扰素基因的转录或翻译
- C. ISGs能够抑制病毒核酸的复制
- D. 人体干扰素基因位于线粒体DNA上
- 30. 马兜铃酸的代谢产物会与细胞中的 DNA 形成"加合物",导致相关基因中的 A-T 碱基对被替换为 T-A,从而诱发 肿瘤的产生。马兜铃酸的代谢物引起的变异属于
- B. 基因突变 C. 染色体结构变异 D. 不可遗传变异
- 31. 大豆植株的体细胞含有 40 条染色体,用放射性 60Co 处理大豆种子后,筛选出一株抗花叶病的植株 X,取其花粉经 离体培养得到若干植株统称为Y,其中抗病植株占50%。下列叙述正确的是
 - A. 放射性 60Co 可以诱发定向的基因突变
 - B. 获得植株 Y 的过程称之为单倍体育种
 - C. 将 X 连续自交可以获得更多抗花叶病的大豆植株
 - D. 植株 Y 的体细胞在有丝分裂后期含有 20 条染色体
- 32. 果蝇正常复眼是卵圆形,大约由800个小眼组成。X染色体上棒眼基因(B)使果蝇复眼中的小眼数目减少而形成 棒状,这是由于X染色体上一个小片段的串联重复所造成的。这种变异属于

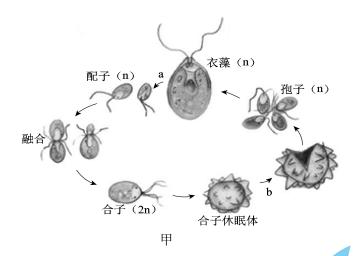
- 33. 下列有关染色体组和单倍体的叙述正确的是
 - A. 一个染色体组内一定不含有等位基因
 - B. 一个染色体组应是配子中的全部染色体
 - C. 含有两个染色体组的生物一定不是单倍体
 - D. 单倍体生物体细胞内一定不含有等位基因
- 34. 遗传咨询对预防遗传病有积极意义。下列情形中不需要遗传咨询的是
 - A. 男方幼年曾因外伤截肢
- B. 亲属中有智力障碍患者
- C. 女方是先天性聋哑患者
- D. 亲属中有血友病患者
- 35. 基因突变、基因重组和染色体变异的共同点是都
 - A. 产生新的基因

- B. 产生新的基因型
- C. 属于可遗传的变异
- D. 改变基因中的遗传信息
- 36. 使用某种农药,防治某种农业害虫,开始效果很显著,长期使用后,
 - A. 害虫对农药进行定向选择
- B. 害虫对农药逐渐适应
- C. 农药刺激害虫产生了变异
- D. 农药对害虫的抗药变异进行定向选择
- 37. 下列有关生物进化的表述,不正确的是
 - A. 捕食者的存在可促进被捕食者的进化
 - B. 生物之间的相互关系影响生物的进化。
- D. 生物多样性的形成是生物进化的结果 2004 年科学家在《中华》 38. 2004年科学家在《自然》杂志上发表的论文指出,大约在240万年前,人类的MYH16基因发生了突变,致使人 类颌肌生长放慢,从而极大地减轻了对颅骨的束缚,使颅骨从此获得了解放,也使大脑有了更大的生长空间,最终 进化成了大脑容量大、下颌肌肉少的现代人。据此分析,下列对于基因突变的说法正确的是
 - A. MYH16 基因的突变为人类进化提供了原材料
 - B. 基因突变的结果都是对生物有利的
 - C. MYH16 基因突变因对人类发展有重要帮助而不可逆
 - D. MYH16 基因的突变使人类朝着大脑容量大的方向进化
- 39. 现代生物进化理论认为, 生物进化的实质是
 - A. 基因突变和基因重组
- B. 自然选择的作用
- C. 种群基因频率的改变
- D. 地理隔离和生殖隔离
- 40. 决定自然界中生物多样性和特异性的内在根本原因是生物体内
 - A. 蛋白质分子的多样性和特异性 B. DNA 分子的多样性和特异性
 - C. 氨基酸种类的多样性和特异性
- D. 化学元素的多样性和特异性

第二部分 非选择题(共50分)

41. (5分)

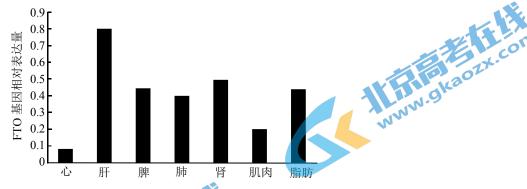
遗传学奠基人孟德尔对豌豆杂交实验进行了研究,发现了基因的基本传递规律。下面是他的部分实验内容,请分 析并回答相关问题。


(1) 孟德尔在杂交实验基础上,提出"杂种个体产生的具有不同遗传因子组成的生殖细胞是等量的"。为了验证这个假 说,孟德尔设计了四组杂交实验《下表》,他根据假设预期了实验结果,第二组和第四组应该是_____的(填写 "相同"或"不同"),从表中数据可知,实际结果与预期结果 (填写"相符"或"不相符"),由此证明 了孟德尔假说的正确性。

- 4										
1		花粉来源	卵细胞来源	F_2						
	第一组	黄圆亲本	F ₁	全部为黄色圆粒						
	第二组	绿皱亲本	F ₁	31 个黄圆	26 个绿圆	27 个黄皱	26 个绿皱			
	第三组	F ₁	黄圆亲本		全部为黄					
	第四组	F ₁	绿皱亲本	24 个黄圆	25 个绿圆	22 个黄皱	27 个绿皱			

(2) 孟德尔继续观察了第二组和第四组 F_2 中黄圆自交产生的后代,更有力地证明了他的假说,即其自交产生的种子有种表现型,其比例为 。
(3) 孟德尔整个研究过程体现了生命科学研究中常用的的方法。
42. (5分)
在研究 DNA 复制机制的过程中,为检验"DNA 半保留复制"假说是否成立,研究者用蚕豆根尖进行实验,主要步骤如下:
步骤① 将蚕豆根尖置于含放射性 ³H 标记胸腺嘧啶的培养 在第一个、第二个和第三
市,继续培养大约两个细胞周期的时间。
(1)步骤①目的是标记细胞中的分子。依据"DNA 半保留复制"假说推测, DNA 分子复制的产物应符合甲图中的 (选甲图中字母填写)。
中期的染色体示意图 (深色代表染色单体具有放射性)
(深色代表单链具有放射性) 乙
(2) 若第一个细胞周期的检测结果是每个染色体上的姐妹染色单体都具有放射性,则该结果(填写"能"或
"不能")确定假说成立。 (3)若第二个细胞周期的放射性检测结果符合乙图中的(选乙图中字母填写),且第三个细胞周期的放射性
(3) 石第二十细胞间别的成别已位侧结末约百乙图中的(远乙图中于母填与),且第三十细胞间期的成别已 检测结果符合乙 <mark>图中的(选乙图中字母填写),则假说成立。</mark>
43. (9分) 果蝇是经典的遗传学实验材料,其染色体组成如图所示。IV 号常染色体是最小的一对, IV 号染色体的单体和三体
在多种性状表现上与野生型不同,减数分裂时,单体型的一条IV号染色体以及三体型多余的一条IV号染色体随机地
移向两极,均为可育。无眼基因(e)是 IV 号染色体上为数不多的基因之一。请分析回答下列问题:
com
IV STORES
The second secon
N W WWW.gkaozx.co
正常型(有四对染色体) 单体型(IV号染色体只有一条) 三体型(IV号染色体三条)
(1) 实验一:无眼雌果蝇与单体型有眼雄果蝇交配、孵化出来一些 F_1 个体。母本的基因型是,后代眼的表现
型有 $_{}$ 种, $_{\mathrm{F}_{1}}$ 中 $_{}$ 果蝇的出现,证实了无眼基因在 $_{\mathrm{IV}}$ 号染色体上。
(2)上述实验 F ₁ 中某些个体不能完成孵化,它们均为无眼型,其基因型是,不能成活的原因可能是。
(3) 实验二:三体型有眼雄果蝇(基因型表示为 EEE)与无眼雌果蝇交配,三条 IV 号染色体在减数分裂时形成的精子的基因组成是, F_1 中三体型果蝇所占的比例是, F_1 的表现型是, F_1 雌雄交配, F_2 中
将(填写"有"或"没有")无眼果蝇出现。
Ma.
44. (7分) 衣藻是单细胞生物,能进行无性生殖和有性生殖。甲图表示其有性生殖过程,乙图表示细胞分裂不同时期的染色
体行为(以两对染色体为例),请据图回答问题:

高二生物第一学期期末试卷 第 5 页 (共 11页)


(1) 甲图中 (用图中字母填写) 过程表示减数分裂,判断依据是

- (2) 乙图为减数分裂示意图,其正确的分裂顺序是_____(用图中数字填写)。
- (3) 乙图细胞中染色体与 DNA 数量比为 1:1 的是_____(用图中数字填写),具有两个染色体组的是_____(用图中数字填写)。
- (4) 衣藻进行有性生殖使后代具有更大的变异性,原因是。

45. (8分)

科研人员经过科学研究获得了乌金猪 FTO 基因(与肥胖相关基因)及其表达的相关结果,请据图回答:

- (1) FTO 基因表达包括______和____过程。
- (2)由图结果表明,FTO基因在乌金猪的多种组织和器官中普遍表达,但是_____存在差异,在_____中最高。
- (3) 测定 FTO 基因表达量的方法是: 首先提取待测组织中的 RNA, 利用 RNA 做模板在

(4) 经过 DNA 测序可获得 FTO 基因的碱基对排列顺序,通过此顺序可以推测出 FTO 蛋白的______排列顺序,进而预测 FTO 蛋白的______结构。

46. (10分)

山葡萄以酿酒的独特口味、丰富的营养成分以及极强抗寒性在葡萄育种领域占据重要地位。科学家对"双优"(品种名)山葡萄幼苗进行多倍体诱导,幼苗成活数和变异数见下表:

诱变剂	处理 24 小时			处理 4	8 小时	处理 72 小时		
浓度%	茎 (芽) 分生 组织 (个)	成活数	变异数	成活数	变异数	成活数	变异数	
0	30	30	0	30	0	27	0	
0. 1	30	24	0	20	0	16	0	
0.2	30	12	1	10	1	5	3	
0.4	30	5	2	3	1	3	0	
0.6	30	0	0	0	0	0	0	

(1) 诱导多倍体形成的常用诱变剂是	,其作用是	。多倍体育种的原理是:诱导植物发生
--------------------	-------	-------------------

(2) 设置零浓度组的目的 _______,山葡萄的成活率随______而下降。

(3) 多倍体诱变剂多数为有毒害的化学试剂。在诱导多倍体育种过程中,研究人员偶然发现 旱但不耐寒型的植株,这一变异最可能是诱变剂诱发了

_____导致的。研究人员想利用此变异植株选育既抗旱又抗寒的新品种,最简单的办法是_

47. (6分)

银鱼科鱼类是我国重要经济鱼类,但其分类和进化问题尚存不少争议。按照传统的分类观点,太湖新银鱼、小齿 日本银鱼、有明银鱼三个物种分别属于三个不同的属。科学工作者在传统研究的基础上,采取分子生物学手段,对它 们进行了进一步的研究。

资料1 基于传统的调查法

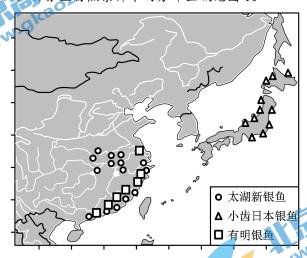
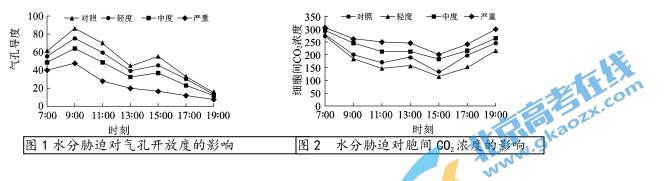


图 1.三种银鱼自然条件下分布区域

资料 2 三种银鱼线粒体 COII 基因和 Cytb 基因核苷酸序列比较数据如下:

	•		
		COII 基因	Cytb 基因
	太湖新银鱼小齿日本银鱼	13. 41	26. 57
	太湖新银鱼有明银鱼有明银鱼	14. 89	24. 32
	有明银鱼—小齿日本银鱼	13. 5913. 59	16. 95
注.	三人物种同一其用的其用序列长度和笔 美	由粉捉丰子的早校共歌月	2.列 差 昆 石 八 山

基于上述资料,回答以下问题:

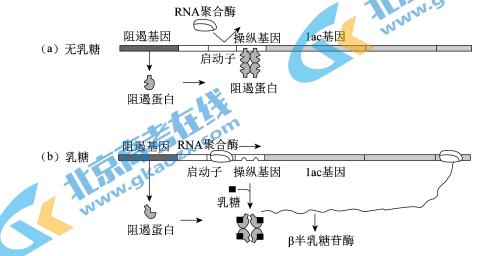

- (1) 自然条件下, 太湖新银鱼和小齿日本银鱼 (填写"会"或"不会") 发生基因交流, 原因是 。
- (2) 太湖新银鱼和小齿日本银鱼亲缘关系如何?请表明你的观点____。从资料2中找到支持你观点的数据,进行 简单的论述
- (3) 三个物种的线粒体 COII 基因和 Cytb 基因核苷酸序列都存在差异 , 这些差异属于

多样性,这种多样性的形成主要是 的结果。

B 卷 | 必修 1、必修 2 综合测试| (共 20 分)

48. (10分)

科研人员研究不同程度的土壤干旱对金光杏梅幼苗光合作用的影响。将各组幼苗置于不同水分条件下 20 天后,检测其生理指标,获得了下图所示的实验结果。



- (1) 该实验中对照组的处理措施应为____。
- (2)据图 1 可知,缺水导致叶片气孔开放度_____,从而使扩散进入叶片内的 CO₂量_____,导致在_____(结构)中的______反应受到影响。
- (3)研究人员发现缺水处理导致叶片内光合色素明显下降,这些物质的主要功能是 ,因此叶片光反应速率下降。
- (4) 研究人员进一步检测了幼苗叶片内细胞间隙 CO₂浓度,结果如图 2 所示。据图描述在 15:00 后,胞间 CO₂浓度的变化是。。
- (5)综合上述实验结果,预期干旱处理后,金光杏梅幼苗光合速率____。请利用以上数据说明说明你做出此预期的依据是

49. (10分)

大肠杆菌是兼性厌氧的原核生物,其生命活动的主要能源物质是葡萄糖。大肠杆菌细胞内的β半乳糖苷酶能将乳糖水解为半乳糖和葡萄糖。请分析回答:

- (1) 大肠杆菌细胞内仅有的细胞器是
- (3) 在培养大肠杆菌时,培养基中若没有乳糖,编码β半乳糖苷酶的 lac 基因不表达;只有在培养基中有乳糖时,该基因才能表达。科学家用下图所示的假说来解释该现象。

- ①根据上述假说,在无乳糖时,阻遏蛋白与操纵基因结合,阻碍了_______酶的移动,干扰了 lac 基因表达中的_过程,导致β半乳糖苷酶不能合成。
- ②科学家筛选出3类大肠杆菌突变体,进行了下表所示实验,为证实上述假说提供了重要的证据。

突变体种类	突变体性状	实验操作	实验结果
第 1 类			第1类突变体性状恢复野
77 7 7	也会合成β半乳糖苷酶	保留自身 DNA	生型
第 2 类	也去古成月十九個日時	的同时导入野	第2类突变体性状不变
	无论培养基中有没有乳	生型大肠杆菌	
第 3 类	糖都不能合成β半乳糖	的部分 DNA	第3类突变体性状不变
	苷酶		

第1类突变体最可能是_____基因突变体;第2类突变体最可能是_ www.gkaozx 因突变体;第3类突变体是阻遏基因突变体,与突变前相比,突变后阻遏蛋白与 操纵基因的结合力_____, 阻遏蛋白与乳糖的结合力___

③阻遏基因的突变结果说明,基因突变有______性。

扫描二维码, 获取更多期末试题

WWW.9kaoz

高二生物参考答案

2018. 1

A 卷

第一部分(选择题, 1-10 题, 每题 2 分; 11-40 题, 每题 1 分, 共 50 分)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	В	С	С	C	В	С	D	A	C
题号	11	12	13	14	15	16	17	18	19	20
答案	C	D	В	С	D	В	D	В	A	Ва
题号	21	22	23	24	25	26	27	28	29	3 0
答案	В	D	В	В	D	C	D	C	D	В
题号	31	32	33	34	35	36	37	38	39	40
答案	С	D	A	A	С	D	C	A	С	В

非选择题 共50分)

- 41. (每空1分, 共5分)
 - (1) 相同 相符
 - (2) 49:3:3:1
 - (3) 假说一演绎
- 42. (每空1分,共5分)
 - (1) DNA
 - (2) 不能
 - (3) e e和f
- 43. (每空1分,9分)
 - (1) ee 2 无眼
 - (2) e 无眼基因使个体生存能力弱、少一条 IV 号染色体(答出其中一
 - (3) E和EE 1/2
- 有眼
- 有
- 44. (除特殊标记外,每空1分,共7分)
 - (1) b 合子中染色体为 2n, 分裂后孢子中染色体数为 n (2分, 两个要点答全给 2分, 少一个要点给 1分) 24531
 - (2) (1)(3) (2)(3)(4)
 - 裂过程中会发生基因重组(和"交叉互换"),会产生多种类型的配子 (3) 有性生殖通过减数分裂产生配子 (答案合理给分)
- 45. (每空1分,8分)
 - (1) 转录 翻译
 - (2) (FTO 基因) 相对表达量 肝
 - (3) 逆转录 相对表达量
 - (4) 氨基酸 空间

- 46. (除特殊标记外,每空1分,共10分)
 - (1) 秋水仙素 在细胞分裂前期抑制纺锤体的形成(2分,两个要点答全给2分) 染色体数目变异
 - (2) 对照 处理时间的延长和药物浓度的增加(2分,两个要点答全给2分)
 - (3) 基因突变 用抗旱不耐寒与抗寒不抗旱的品种杂交(2分,答"杂交育种"给1分)
- 47. (除特殊标记外,每空1分,共6分)
- (1) 不会 两个物种在空间上存在地理隔离
- (2) 答案合理,逻辑清晰即给分,本小题 2 分,其中表明观点 1 分,写出理由 1 分。 以下三种答案中,答出其中一种即给分。
- 答案 1: 亲缘关系近 理由: COII 基因核苷酸差异数据显示,在两个有地理隔离的物种(太湖新银鱼与小齿日本银鱼) 之间核苷酸序列差异为 13.41,是最小的。
- 答案 2: 亲缘关系远 理由: Cytb 基因核苷酸差异数据显示,在两个有地理隔离的物种(太湖新银鱼与小齿日本银鱼) 之间核苷酸序列差异为 26.57,是最大的。
- 答案 3: 不能确定 理由: COII 基因与 Cytb 基因核苷酸差异数据的结果是相反的,需要依据更多的研究数据才能得出结论
- (3) 基因(遗传) 长期自然选择

B 卷 (共 20 分)

- 48. (除特殊标记外,每空1分,共10分)
- (1) 水分供应充足
- (2)下降 减少 叶绿体基质 碳(暗)
- (3) 吸收、传递和转化光能(2分)
- (4) 胞间隙 CO2浓度不断增加
- (5) 下降

理由 1:根据图 1 数据推测,干旱条件下,气孔开放度降低,植物吸收 CO_2 量减少理由 2:根据图 2 数据推测,干旱条件下,胞间隙 CO_2 浓度在 15:00 后增加,植物对 CO_2 的利用率降低(两个理由,写出其中一个即给分)

- 49. (每空1分, 10分)
 - (1) 核糖体
 - (2) 一、二 细胞膜
 - (3) ①RNA 聚合 转录
 - ②阻遏 操纵 增强 减弱
 - ③多方向(不定向)

