
2021 北京四中高一(下)期中

数 学

I 巻 (満分90分)

- NW.9kao2 一、选择题(本大题共 10 小题,每小题 4 分,共 40 分,在每小题列出的四个选项中,选出符合题目要求的一 项.)
- 1. $\exists \exists \alpha \in \left(\frac{\pi}{2}, \pi\right), \cos \alpha = -\frac{3}{5}, \exists \tan \alpha = \frac{\pi}{2}$

- (D) $-\frac{4}{3}$

- 2. α 是一个任意角,则 α 的终边与 $3\pi-\alpha$ 的终边
 - (A) 关于坐标原点对称

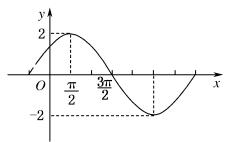
(B) 关于 x 轴对称

(C) 关于 y 轴对称

- (D) 关于直线 y = x 对称
- 3. 若角 300° 的终边上有一点(4,a),则 a 的值是
 - (A) $4\sqrt{3}$
- (B) $-4\sqrt{3}$
- (C) $\pm 4\sqrt{3}$
- (D) $\sqrt{3}$

- 4. 若 $\frac{\cos 2\alpha}{\sin\left(\alpha + \frac{\pi}{4}\right)} = \frac{\sqrt{2}}{2}$,则 $\cos \alpha \sin \alpha$ 的值为
 - (A) $-\frac{\sqrt{2}}{2}$
- (B) $-\frac{1}{2}$
- (C) $\frac{1}{2}$
- 5. 已知向量 $\mathbf{a} = (1, \sqrt{3})$,向量 $\mathbf{b} = (-\frac{1}{2}, \frac{\sqrt{3}}{2})$,则向量 \mathbf{a} 与向量 \mathbf{b} 的夹角为
 - $(A) 60^{\circ}$
- (B) 30°
- (C) 120°
- (D) 150°
- 6. 将函数 $y = \sin 2x$ 的图像向左平移 $\frac{\pi}{6}$ 个单位,所得图像的函数解析式是
 - (A) $y = \sin\left(2x \frac{\pi}{3}\right)$
- (B) $y = \sin\left(2x \frac{\pi}{6}\right)$

(C) $y = \sin\left(2x + \frac{\pi}{3}\right)$


(D) $y = \sin\left(2x + \frac{\pi}{6}\right)$

- 7. 函数 $y = 2\cos^2\left(x \frac{\pi}{4}\right) 1$ 是
 - (A) 最小正周期为π的奇函数
- (B) 最小正周期为π的偶函数
- (C) 最小正周期为 $\frac{\pi}{2}$ 的奇函数
- (D) 最小正周期为 $\frac{\pi}{2}$ 的偶函数
- 8. 已知 $\pi < \alpha < \frac{3\pi}{2}$, $\sin\left(\alpha \frac{\pi}{4}\right) = \frac{3}{5}$, 则 $\cos \alpha$ 的值为
 - (A) $-\frac{\sqrt{2}}{10}$
- (B) $\frac{\sqrt{2}}{10}$
- (C) $-\frac{7\sqrt{2}}{10}$
- 9. 已知 $f(x) = 2\cos(\omega x + \varphi) + m(\omega > 0)$, 对任意实数 t 都有 $f(\frac{\pi}{4} t) = f(t)$, 且 $f(\frac{\pi}{8}) = -1$, 则实数 m
 - (A) ± 3
- (C) -1或3
- (D) -3或1
- 10. 关于函数 $f(x) = \sin|x| |\sin x|$ 有下述四个结论:
 - ① f(x)是偶函数;
- ② f(x)在区间 $\left(\frac{3\pi}{2}, 2\pi\right)$ 上单调递增;
- ③ f(x)的最大值为1; ④ f(x)在区间 $[-\pi,\pi]$ 上有3个零点.

其中所有正确结论的编号是

- (A) (1)(2)
- (B) (2)(4)
- (C) (1)(4)
- www.gkao

- 二、填空题(本大题共6小题,每小题4分,共24分.)
- 11. 已知 $\mathbf{a} = (-3,2)$, $\mathbf{b} = (1,x)$,若 $\mathbf{a} \perp \mathbf{b}$,则实数x的值为
- 12. 函数 $y = 2\cos x$ 在区间 $\left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$ 上的最大值为____,最小值为___
- 13. 已知 α 是第四象限角,且 $\sin \alpha = -\frac{2\sqrt{5}}{5}$,则 $\frac{\sin(\pi + \alpha) + \cos(-\alpha)}{\cos(\frac{\pi}{2} \alpha) + \sin(\frac{\pi}{2} + \alpha)} = \underline{\hspace{1cm}}$
- 14. 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, 0 < \varphi < \pi)$ 在一个周期内的图像如图所示,则函数 f(x)的解析 式为

16. 已知函数
$$f(x) = \sin\left(2x - \frac{\pi}{6}\right) + \frac{1}{2}$$
,若不等式 $f(x) \ge \frac{3}{2}$ 在区间 $\left[-\frac{\pi}{3}, m\right]$ 上有解,则 m 的最小值为____.

- 三、解答题(本大题共3小题,共26分.)
- 17. (本小题 7分)

已知
$$\alpha \in \left(\frac{\pi}{2}, \pi\right)$$
,且 $\sin \alpha = \frac{3}{5}$.

(I) 求 $\cos \alpha$ 的值;

(II) 求
$$\frac{\cos 2\alpha - \sin 2\alpha + 1}{\sin \left(\frac{\pi}{4} - \alpha\right)}$$
 的值.

18. (本小题 9 分)

已知函数
$$f(x) = \sqrt{3} \sin x \cdot \cos x - \cos^2 x + \frac{1}{2}$$
...

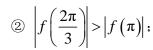
- (I) 求函数 f(x) 的最小正周期;
- (II) 求函数 f(x) 的单调递减区间.

19. (本小题 10分)

已知向量
$$\mathbf{a} = \left(\cos\frac{3x}{2}, \sin\frac{3x}{2}\right), \mathbf{b} = \left(\cos\frac{x}{2}, \sin\frac{x}{2}\right),$$
其中 $\mathbf{x} \in [\pi, 2\pi].$

- (I) 求 $\mathbf{a} \cdot \mathbf{b}$ 及 $|\mathbf{a} + \mathbf{b}|$ 的值;
- (II) 若函数 $f(x) = 2\mathbf{a} \cdot \mathbf{b} |\mathbf{a} + \mathbf{b}|$, 求 f(x)的最大值.

- 一、选择题(本大题共 3 小题,每小题 4 分,共 12 分,在每小题列出的四个选项中,选出符合题目要求的 WW.9kaozx.co
- 1. $\frac{3-\sin 50^{\circ}}{2-\cos^2 20^{\circ}} =$
 - (A) $\frac{1}{2}$
- (B) $\frac{\sqrt{2}}{2}$
- (C) $\frac{\sqrt{3}}{2}$
- 2. 函数 $y = \sin 2x$ 的图像经过适当变换可以得到 $y = \cos 2x$ 的图像,则这种变换可以是
 - (A) 向右平移 $\frac{\pi}{4}$ 个单位


(B) 向左平移 $\frac{\pi}{4}$ 个单位

- (C) 向左平移 $\frac{\pi}{2}$ 个单位
- (D) 向右平移 $\frac{\pi}{2}$ 个单位
- 3. 平面直角坐标系中,O为坐标原点.已知点 A(-2,0),点 $P(\cos\theta,\sin\theta)$ $(\theta\in\mathbf{R})$,则向量 \overrightarrow{AO} 与 \overrightarrow{AP} 的夹角的 取值范围是
- (A) $\left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$ (B) $\left[0, \frac{\pi}{6}\right]$ (C) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ (D) $\left[0, \frac{\pi}{4}\right]$

- 二、填空题(本大题共 3 小题,每小题 5 分,共 15 分.)
- 4. 定义运算 a*b 为: $a*b = \begin{cases} a, & a \le b, \\ b, & a > b. \end{cases}$ 例如,1*2=1,则函数 $f(x) = \sin x * \cos x$ 的值域为_
- 5. 已知函数 $f(x) = A\sin(\omega x + \varphi) + k(A > 0, \omega > 0, 0 < \varphi < \pi)$,某同学描点绘制函数 f(x) 在区间[0,2]上的草 图,部分列表如下:

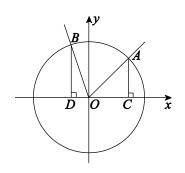
x	0	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{5}{8}$	W.N.N.
$\omega x + \varphi$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	
f(x)	2	3	1	-1	

- 6. 已知函数 $f(x) = a \sin 3x + b \cos 3x$,其中 $a, b \in \mathbb{R}$, $ab \neq 0$.若 $f(x) \leq \left| f\left(\frac{\pi}{4}\right) \right|$ 对任意 $x \in \mathbb{R}$ 恒成立,则
 - ① $f\left(\frac{3\pi}{4}\right) = 0$;

- ③ f(x)既不是奇函数也不是偶函数;
- ④ f(x)的单调递增区间是 $\left[\frac{\pi}{4}+k\pi,\frac{7\pi}{12}+k\pi\right],k\in\mathbf{Z}$.

以上结论正确的是____(写出所有正确结论的编号).

- 三、解答题(本大题共2小题,共23分.)
- 7. (本小题 13分)


如图,在直角坐标系 xOy 中,角 α 的顶点是原点,始边与 x 轴正半轴重合,终边交单位圆于点 A,且 $\alpha \in \left(\frac{\pi}{6}, \frac{\pi}{2}\right).$ 将角 α 的终边接逆时针方向旋转 $\frac{\pi}{3}$,交单位圆于点 B. 记 $A(x_1, y_1), B(x_2, y_2)$.

(I) 若
$$x_1 = \frac{1}{3}$$
, 求 x_2 ;

(II) 分别过 A, B 作 x 轴的垂线, 垂足依次为 C, D.

记 \triangle AOC 的面积为 S_1 , \triangle BOD 的面积为 S_2 .

若 $S_1 = 2S_2$, 求角 α 的值.

8. (本小题 10分)

设 f(x) 是定义在区间 [s,t] 上的函数,在 (s,t) 内任取 n-1 个数 $x_1,x_2,\cdots,x_{n-2},x_{n-1}$,设 $x_1 < x_2 < \cdots$ $< x_{n-2} < x_{n-1}$,令 $s = x_0, t = x_n$,如果存在一个常数 M > 0,使得 $\forall n \in \mathbf{N}^*$, $\sum_{i=1}^n \left| f(x_i) - f(x_{i-1}) \right| \le M$ 恒成立,则称函数 f(x) 在区间 [s,t] 上具有性质 P.

已知函数 f(x) = x, $g(x) = \sin x$.

- (I) 若对任意 $x \in [0,1]$, 不等式 $f(x) + g(x) \le a$ 恒成立, 求实数a的取值范围;
- (II) 试判断函数 f(x)+g(x)在区间 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 上是否具有性质 P,并说明理由.
- (III) 试判断函数 $f(x) \cdot g(x)$ 在区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上是否具有性质 P,并说明理由.

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京、辐射全国 31 省市。

北京高考在线平台一直秉承"精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

官方微信公众号: bj-gaokao 咨询热线: 010-5751 5980 官方网站: www.gaokzx.com 微信客服: gaokzx2018