高一第一学期期末样题

数学参考答案

2022.01

一、选择题(共10小题,每小题4分,共40分)

题号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	A	A	D	С	C	C	В	D	В	В

二、填空题(共5小题,每小题4分,共20分)

题号	(11)	(12)	(13)	(14)	(15)
答案	(1,+∞)	1	$f(x)=1-2^x$,(答 案不唯一)	(1,2)	124

注: 第15 题少选项得2分, 错选或未作答均为0分。

三、解答题(共 4 小题,共 40 分)

(16) (共9分)

解: 由 $x^2 - 2x - 3 > 0$ 得 x < -1 或 x > 3.

所以
$$A = (-\infty, -1) \cup (3, +\infty)$$
.

.....2 分

(I) 当a=1时, $B=(-\infty,4]$.

……3分

所以 $A \cap B = (-\infty, -1) \cup (3, 4]$

………5分

(II) 由题意知 B = (-∞,4a].

因为 $A \cup B = \mathbf{R}$,

所以 $4a \ge 3$.

所以 $a \ge \frac{3}{4}$

所以 实数a的取值范围是 $\left[\frac{3}{4},+\infty\right)$.

-----8分

-----9分

(17) (共10分)

解: 选择条件①: a > 1,b = 1

(I)函数f(x)是偶函数,理由如下:

.....1

分

f(x)的定义域为**R**,对任意 $x \in \mathbf{R}$,则 $-x \in \mathbf{R}$.

.....2

数学答案 第1页(共5页)

分

因为
$$f(-x) = a^{-x} + a^x = f(x)$$
,

.....3分

所以 函数 f(x) 是偶函数.

(II) *f*(*x*) 在(0,+∞)上是增函数.

·····4 分

任取
$$x_1, x_2 \in (0, +\infty)$$
,且 $x_1 < x_2$,则 $x_1 + x_2 > 0$.

因为 a > 1,

所以 $a^{x_1} < a^{x_2}$, $a^{x_1+x_2} > 1$.

所以 $f(x_1) - f(x_2) = a^{x_1} + a^{-x_1} - (a^{x_2} + a^{-x_2})$

$$= (a^{x_1} - a^{x_2})(1 - \frac{1}{a^{x_1} \cdot a^{x_2}})$$

$$= (a^{x_1} - a^{x_2}) \cdot \frac{a^{x_1 + x_2} - 1}{a^{x_1 + x_2}} < 0 , \quad \mathbb{R}^{1} f(x_1) < f(x_2). \qquad \cdots$$

分

所以 f(x) 在 $(0,+\infty)$ 上是增函数.

(III) 实数m的取值范围是[-5,-1]U[1,5].

.....10

分

选择条件②: 0 < a < 1, b = -1.

(I) 函数 f(x) 是奇函数, 理由如下:

----1分

f(x)的定义域为**R**,对任意 $x \in \mathbf{R}$,则 $-x \in \mathbf{R}$.

2

分

因为
$$f(-x) = a^{-x} - a^x = -f(x)$$
,

.....3

所以 函数 f(x) 是奇函数.

(II) f(x) 在 $(0,+\infty)$ 上是减函数.

……4 分

任取
$$x_1, x_2 \in (0, +\infty)$$
, 且 $x_1 < x_2$

.....5

If D $a^{x_1} > a^{x_2} > 0$

所以 $f(x_1) - f(x_2) = a^{x_1} - a^{-x_1} - (a^{x_2} - a^{-x_2})$

$$= (a^{x_1} - a^{x_2})(1 + \frac{1}{a^{x_1} \cdot a^{x_2}}) > 0, \quad \mathbb{P} f(x_1) > f(x_2). \qquad \cdots \qquad 7 / 3$$

数学答案 第2页(共5页)

所以 f(x) 在 $(0,+\infty)$ 上是减函数.

(III) 实数m 的取值范围是 $(-\infty,-1]$ U $[1,+\infty)$.

(18) (共10分)

解: (I) a=18, b=4.

分

(II) 记样本中甲生产线的 4 件二等品产品为 A_1, A_2, A_3, A_4 ; 乙生产线的 2 件二等品产品为 B_1, B_2 .

从样本中6件二等品中任取2件,所有可能的结果有15个,它们是:

$$(A_1, A_2)$$
, (A_1, A_3) , (A_1, A_4) , (A_2, A_3) , (A_2, A_4) , (A_3, A_4) , (A_1, B_1) , (A_2, B_1) ,

$$(A_3, B_1)$$
, (A_4, B_1) , (A_1, B_2) , (A_2, B_2) , (A_3, B_2) , (A_4, B_2) , (B_1, B_2) .

.....6 分

用C表示: "至少有1件为甲生产线产品"这一事件,则 \overline{C} 中的结果有1个,

它是 (B_1,B_2) .

.....7 分

所以
$$P(C) = 1 - P(\overline{C}) = 1 - \frac{1}{15} = \frac{14}{15}$$
.

-----8分

 $(\parallel \parallel) P_1 < P_2$.

分

(19) (共11分)

解: (I) 函数 $f(x) = 2^x$ 不具有性质 P(0). 理由如下:

对于 a=0 , $x_1=1$, 因为 $\frac{1+2^{x_2}}{2}>0$, $x_2 \in \mathbf{R}$, 所以 不存在 $x_2 \in \mathbf{R}$ 满足 $\frac{x_1+f(x_2)}{2}=a$.

所以 函数 $f(x) = 2^x$ 不具有性质 P(0).

.....1 分

函数 $f(x) = \log_2 x$, $x \in (0,1)$ 具有性质 P(0). 理由如下:

数学答案 第3页(共5页)

对于 $\forall x_1 \in (0,1)$, 取 $x_2 = 2^{-x_1}$, 则 $x_2 \in (0,1)$.

因为
$$\frac{x_1 + \log_2 x_2}{2} = \frac{x_1 - x_1}{2} = 0$$
,

所以 函数 $f(x) = \log_2 x$, $x \in (0,1)$ 具有性质 P(0).

……2 分

(II) 必要而不充分 理由如下:

.....3 分

①若 f(x) 存在零点,令 f(x) = 3x - 1, $x \in [0,1]$,则 $f(\frac{1}{3}) = 0$.

②若 $2 \in D$,因为 f(x)具有性质P(1),

取 $x_1 = 2$,则存在 $x_2 \in D$ 使得 $\frac{x_1 + f(x_2)}{2} = \frac{2 + f(x_2)}{2} = 1$.

所以 $f(x_2) = 0$,即 f(x)存在零点 x_2 .

………5分

综上可知, "f(x)存在零点"是" $2 \in D$ "的必要而不充分条件.

(III) 记函数 $f(x) = tx^2 + x + 4$, $x \in [0,2]$ 的值域为 F ,函数 g(x) = 2a - x , $x \in [0,2]$ 的值域 A = [2a - 2,2a] .

因为 存在唯一的实数 a , 使得函数 $f(x) = tx^2 + x + 4$, $x \in [0,2]$ 有性质 P(a)

即存在唯一的实数 a , 对 $\forall x_1 \in [0,2]$, $\exists x_2 \in [0,2]$, 使得 $f(x_2) = 2a - x_1$ 成立,

所以 F = A.

……7分

由 F = A 得 a = 3.

-----8分

②当 $-\frac{1}{4} \le t$,且 $t \ne 0$ 时, $f(x) = tx^2 + x + 4$, $x \in [0,2]$ 是增函数,所以 其值域 F = [4,4t+6].

由 F = A得 t = 0,舍去.

.....9分

③当 $-\frac{1}{2} \le t < -\frac{1}{4}$ 时, $f(x) = tx^2 + x + 4$, $x \in [0,2]$ 的最大值为 $f(-\frac{1}{2t}) = 4 - \frac{1}{4t}$,

最小值为4,

所以 f(x) 的值域 $F = [4, 4 - \frac{1}{4t}]$.

数学答案 第4页(共5页)

由 F = A 得 $t = -\frac{1}{8}$, 舍去.

当 $t < -\frac{1}{2}$ 时, $f(x) = tx^2 + x + 4$, $x \in [0,2]$ 的最大值为 $f(-\frac{1}{2t}) = 4 - \frac{1}{4t}$,最小值

为 f(2) = 4t + 6,

所以 f(x) 的值域 $F = [4t + 6, 4 - \frac{1}{4t}]$.

由
$$F = A$$
 得 $t = \frac{-2 - \sqrt{3}}{4}$ (舍去 $t = \frac{-2 + \sqrt{3}}{4}$).

分

综上所述,
$$t = 0$$
 或 $t = \frac{-2 - \sqrt{3}}{4}$.

选做题:(本题满分5分。所得分数可计入总分,但整份试卷得分不超过100分)

(II) 合格; ·············2分

数学答案 第5页(共5页)

北京高一高二高三期末试题下载

北京高考资讯整理了【**2022 年 1 月北京各区各年级期末试题&答案汇总**】专题,及时更新最新试题及答案。

通过【**北京高考资讯】公众号**,**对话框回复【期末**】或者**底部栏目<试题下载→期末试题>**, 进入汇总专题,查看并下载电子版试题及答案!

