高二第一学期期末试卷

数学

(清华附中高22级)

第一部分(选择题 共40分)

-,	选择题共10小题,	每小题4分,	共40分。	在每小题列	J <mark>出</mark> 的四个选项中,	选出符合
	题目要求的一项。					

(1) 及未日11	(1,2,3,1,3,3,7,3,7), D = (y)	$y=2$, $x\in H_1$, $x\in H_1$	D 41 ()
(A) $\{2,4\}$	(B) $\{2,4,8\}$	(C) $\{2,4,6,8\}$	(D) {2,4,6,8,9}
() ())	G, G, J	(-) () ,) ,	(-) () / / / /

(2) $(x^2 - \frac{1}{x})^5$ 的展开式中 x 项的系数为() (A) -10 (B) -5(D) 10

设售△A={123456789} R-∫v|v-2*

- (3) 双曲线 $\frac{x^2}{a^2} y^2 = 1$ 的焦距为 4,则其渐近线方程为()
 - (A) $y = \pm \sqrt{5}x$ (B) $y = \pm \sqrt{3}x$ (C) $y = \pm \frac{\sqrt{5}}{3}x$ (D) $y = \pm \frac{\sqrt{5}}{5}x$
- (4) 已知函数 $f(x) = x \frac{1}{x}$,则下列说法中正确的是()
 - (A) $f(2)=f(\frac{1}{2})$ (B) f(x) 的图像关于原点对形
- (C) f(x) 在定义域内是增函数 (D) f(x) 存在最大值 (5) 在 $\triangle ABC$ 中,AB=5,BC=3, $\sin \angle BAC=\frac{3}{5}$,则 $\overrightarrow{AB} \cdot \overrightarrow{CB}$ 等于()
- (B) -9
- (6) 已知底面边长为 2 的正四棱柱 $ABCD A_iB_iC_iD_i$ 的体积为 $8\sqrt{3}$,则直线 AC 与 A_iB 所 成角的余弦为(
 - (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{4}$ (A) $\frac{\sqrt{3}}{2}$
- (7) 已知点 F 是双曲线 $C: x^2-y^2=1$ 的一个焦点,直线 l:y=kx ,则"点 F 到直线 l 的 距离大于 1"是"直线l与双曲线 C没有公共点"的()
 - (A) 充分不必要条件 (B) 必要不充分条件
 - (D) 既不充分也不必要条件 (C) 充分必要条件

关注北京高考在线官方微信: 京考一点通 (微信号:bjgkzx), 获取更多试题资料及排名分析信息

(8) 已知数列 $\{a_n\}$ 的	的前 n 项和为 S_n ,满足	$E S_n = 2a_n - 1(n = 1, 2,$	3,…),则下列结论中正确
的是()			
$(A) a_n = 2^n$		$(B) S_n = 2^{n+1}$	-1-2
(C) 数列{log ₂ a	$\binom{n^2-1}{2}$ 的前 n 项和为 $\frac{n^2-1}{2}$	$\frac{1}{a_n}$ (D) 数列 $\{\frac{S_n}{a_n}\}$	} 是递增数列
(9) 已知直线 l_1 : mx	+y=0恒过定点 A ,	直线 $l_2: x - my - 2 = 0$	0 恒过定点 B ,且直线 l_1 与
l_2 交于点 P ,则 p	点 P 到点 $(0,2\sqrt{2})$ 的足	巨离的最大值为()	
(A) 4	(B) $2\sqrt{3}$	(C) 3	(D) 2
(10)已知函数 $f(x)$	$= \begin{cases} x^2 - 2x, x \le 0 \\ \ln(x+1), x > 0 \end{cases} . $	不等式 $x(f(x)-a x)$	≤ 0 对任意实数 <i>x</i> 恒成立,
则 a 的取值范围;	是()		
(A) (0,1]	(B) $(0,2]$	(C) [1,2]	(D) $[1,+\infty)$
	第二部分 (非	选择题 共 110 分)	
二、填空题共5小题	,每小题 5 分,共 25	分。	
(11) 已知复数z=-	$3+ai(a \in R)$ 对应的点	点到原点的距离是 <i>a</i> +	1,则实数 <i>a</i> =
<mark>4</mark>			I www.gae
(12) 已知点 P(2,-4)在抛物线 $C: y^2 = 2I$	px上,则点 P 到抛物:	线 C 的焦点的距离为
<mark>4</mark>			
(13) 已知函数 <i>f(x</i>)	$= 2\sin(\omega x + \frac{\pi}{3}) $	可 $[0,\frac{\pi}{2}]$ 上的最大值为	σ 2,则正数ω的最小值为
(14) 从数字 1,2,3,4	中选出3个不同的数	字构成四位数,且相邻	邻数位上的数字不相同,
则这样的四位。	粉 出 方	72 华 1 2 2 列 212 13	312 2131 1231 1321 3121 #

关注北京高考在线官方微信: 京考一点通 (微信号:bjgkzx), 获取更多试题资料及排名分析信息。

6×3×4=72 ↑

(15) 在平面直角坐标系中, 定义 $d(A,B) = |x_1 - x_2| + |y_1 - y_2|$ 为点 $A(x_1, y_1)$ 到点 $B(x_2,y_2)$ 的"折线距离".点 O 是坐标原点,点 P 在圆 $x^2 + y^2 = 1$ 上,点 Q 在直线

①若点P的横坐标为 $-\frac{3}{5}$,则 $d(O,P) = \frac{7}{5}$; ②d(O,P)的最大值是 $\sqrt{2}$;

 $2x+y-2\sqrt{5}=0$ 上.在这个定义下,给出下列结论:

③ d(O,Q) 的最小值是 2;

(4) d(P, Q) 的最小值是 $\frac{\sqrt{5}}{2}$

其中, 所有正确结论的序号是

124

- ② $d(O,P) = |x| + |y|, d^2(O,P) = x^2 + y^2 + 2|xy| \le 2(x^2 + y^2), \text{ if } P(\cos\theta, \sin\theta);$
- ③设直线交x轴于 A,作 QB 垂直x轴于 B,则 $|QB|=2|BA|,d(O,Q)\geq |OA|=\sqrt{5}$,当 Q=A 时取等号.
- ④同理当 PQ 是水平线段时, $d(P,Q)_{min}$.求单位圆上点到直线的最小距离为 1,利用此

距离与水平距离的比例为 $\frac{2}{\sqrt{5}}$,求得 $d(P,Q)_{\min} = \frac{\sqrt{5}}{2}$.

三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。

(16) (本小题 14分)

如图, 四边形 CDEF 为矩形,平面 ABCD 上平面 CDEF, AB / /CD, AD LDC,

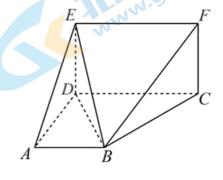
$$AB = AD = DE = \frac{1}{2}DC = 1.$$

- (I) 求证: *BD* 上平面 *BCF*;
- (II) 求直线 BC 与平面 BEF 所成角的大小.

解: (I) 法 1: 过 B 作 BG \perp CD 于 G.: AB / /CD,

$$AD \perp DC$$
, $AB = AD = \frac{1}{2}DC = 1$, $BD = BC = \sqrt{2}$,

又 CD = 2.



∴ $CD^2 = BD^2 + BC^2$, ∴ $BD \perp BC$. ∴ 四边形 CDEF 为矩形, ∴ $CF \perp CD$.

平面ABCD \ 平面CDEF = CD , $\therefore CF \perp$ 平面ABCD. $\because BD \subset$ 平面ABCD, $\therefore CF \perp BD$.

关注北京高考在线官方微信: 京考一点通 (微信号:bjgkzx), 获取更多试题资料及排名分析信息。

AD.由DA, DC, DE两两垂直,则以DA为x轴,以DC为y轴,以DE为z轴建立空间直角坐标系.

$$\overrightarrow{DB} = (1,1,0), \ \overrightarrow{BC} = (-1,1,0), \overrightarrow{CF} = (0,0,1), \ \overrightarrow{AB} \cdot \overrightarrow{BC} = 0, \ \overrightarrow{DB} \cdot \overrightarrow{CF} = 0.$$

(II) 设平面 \overrightarrow{BEF} 的法向量为 $\overrightarrow{n} = (x, y, z)$. $\overrightarrow{BE} = (-1, -1, 1)$, $\overrightarrow{EF} = (0, 2, 0)$,则 $\overrightarrow{n} \cdot \overrightarrow{BE} = 0$,

$$\vec{n} \cdot \overrightarrow{EF} = 0$$

$$\begin{cases} -x - y + z = 0 \\ 2y = 0 \end{cases}$$
, 令 $x = 1$, 则有 $y = 0$, $z = 1$. 即 $\vec{n} = (1,0,1)$. $\vec{BC} = (-1,1,0)$. 设所求角的大小为

$$\theta$$
 . ज़्रा $\sin \theta = |\cos \langle \overrightarrow{n}, \overrightarrow{BC} \rangle| = \frac{|\overrightarrow{n} \cdot \overrightarrow{BC}|}{|\overrightarrow{n}||\overrightarrow{BC}|} = \frac{1}{2} \cdot \therefore \theta = \frac{\pi}{6}$.

(17) (本小题 14分)

在锐角 $\triangle ABC$ 中, $\sin 2B = \sqrt{3} \cos B$, b = 1.

- (I) 求∠B;
- (II)求△ ABC 周长的最大值.

解: (I)
$$\therefore B \in (0, \frac{\pi}{2})$$
, $\therefore \cos B > 0$, $\therefore 2\sin B \cos B = \sqrt{3}\cos B$, $\therefore \sin B = \frac{\sqrt{3}}{2}$, $\therefore \angle B = \frac{\pi}{3}$.

(II)
$$\not\equiv 1$$
: $\because \frac{a}{\sin A} = \frac{c}{\sin C} = \frac{b}{\sin B} = \frac{2\sqrt{3}}{3}$,
 $\therefore a + b + c = \frac{2\sqrt{3}}{3}(\sin A + \sin C) + 1 = \frac{2\sqrt{3}}{3}(\sin A + \sin(\frac{2\pi}{3} - A)) + 1$
 $= \frac{2\sqrt{3}}{3}(\frac{3}{2}\sin A + \frac{\sqrt{3}}{2}\cos A) + 1 = \sqrt{3}\sin A + \cos A + 1 = 2\sin(A + \frac{\pi}{6}) + 1$

法 2:
$$\because b^2 = a^2 + c^2 - 2ac\cos B$$
, $\therefore a^2 + c^2 - ac = 1$, $\therefore (a+c)^2 - 1 = 3ac$.

$$: (\frac{a+c}{2})^2 \ge ac, : (a+c)^2 - 1 \le \frac{3}{4}(a+c)^2, : a+c \le 2.$$

当 a=c=1 时,即 \triangle ABC 是等边三角形, $(a+b+c)_{max}=3$.

(18) (本小题 14分)

NWW.9aokz 某区 12月 10日至 23日的天气情况如图所示.如: 15日是晴天,最低温度是零下 9℃,最高温度是零下4℃,当天温差(最高气温与最低气温的差)是5℃.

- (I) 从 10 日至 21 日某天开始,连续统计三天,求这三天中至少有两天是晴天的概率;
- (II) 从 11 日至 20 日中随机抽取两天, 求恰好有一天温差不高于 5℃的概率;
- (III) 已知该区当月 24 日的最低温度是零下 10℃.12 日至 15 日温差的方差为 s_1^2 , 21 日 至 24 日温差的方差为 s_2^2 , 若 $s_1^2 = s_2^2$, 请直接写出 24 日的最高温度. (结论不要求 证明)

(注:
$$s^2 = \frac{1}{n}[(x_1 - x_1)^2 + (x_2 - x_2)^2 + \dots + (x_n - x_n)^2]$$
, 其中 x 为数据 x_1, x_2, \dots, x_n 的平均数)

- 解:(I)设"这三天中至少有两天是晴天"为事件 A. 连续统计三天共有 12 个基本事件,事 件 A 共有 8 个基本事件.则 $P(A) = \frac{8}{12} = \frac{2}{3}$.
- (II) 从 11 日至 20 日中随机抽取两天共有 $C_{10}^2 = 45$ 个基本事件. 设"恰好有一天温差小于 5℃"为事件 B.不高于 5℃有 11 日, 12 日, 13 日, 14 日, 15 日, 16 日, 20 日.事件 B 有 $C_7^1 C_3^1 = 21$ 个基本事件. 则 $P(B) = \frac{21}{45} = \frac{7}{15}$.

(III) 0°C

法 1: 12 日至 15 日温差为 4,2,5,5, 平均数为 4, 方差 $s_1^2 = \frac{3}{2}$.

关注北京高考在线官方微信: **京考一点通 (微信号:**bjgkzx), 获取更多试题资料及排名分析信息

21 日至 24 日温差为 8,11,11,a , 平均数为 $\frac{a+30}{4}$, 方差

$$s_2^2 = \frac{1}{4} \left[\frac{(a-2)^2}{16} + \frac{(a-14)^2}{16} + \frac{(a-14)^2}{16} + \frac{(3a-30)^2}{16} \right].$$

由题意知 $s_2^2 = \frac{3}{2}$,化简得 $(a-10)^2 = 0$,得 a = 10.

法 2: 12 日至 15 日温差为 4,2,5,5,平均数为 4,即 0,1,1,2 的方差为 s_1^2

21 日至 24 日温差为 8,11,11,a,数据都减去 10,等价于a-10,1,1,2 方差为 s_2^2 . 当且仅当a-10=0 时,两方差相等.

(19) (本小题 14分)

已知函数 $f(x) = (x-1)e^x - \frac{1}{2}ax^2$

- (I) 当a=1时,求证: f(x)在R上是增函数;
- (II) 若 f(x) 在区间 $(0,+\infty)$ 上存在最小值,求 a 的取值范围;
- (III) 若 f(x) 仅在两点处的切线的斜率为 1,请直接写出 a 的取值范围. (结论不要求证明)

解:
$$f'(x) = xe^x - ax = x(e^x - a)$$

(I) 当a=1时,令 $e^x-1=0$,得x=0,当x<0,x<0, $e^x-1<0$ 得f'(x)>0.当x>0. x>0, $e^x-1>0$ 得f'(x)>0.所以f(x)在定义域内是单调递增函数;

(II) 当x > 0时, $e^x > 1$.

当 $a \le 1$ 时, $e^x - a > 0$,则当x > 0时,f'(x) > 0,所以f(x) 在区间(0,+∞) 上单调递增,所以f(x) 在区间(0,+∞) 上不存在最小值;

当a > 1时,由 $x = \ln a$.此时 $\ln a > 0$.

x	$(0, \ln a)$	$\ln a$	$(\ln a, +\infty)$
f'(x)	KIK.	0	+
f(x)	`~	极小值	1

所以 $f(x)_{\min} = f(\ln a)$.

综上,a的取值范围是 $(1,+\infty)$.

(III) 法 1: 方程 $a=e^x-\frac{1}{x}$ 有两个不同解,画 $g(x)=e^x-\frac{1}{x}$ 和 y=a 的图像有两个交点,则 关注北京 a>0 即 a 的取情范围 a (微信号: b jgkzx), 获取更多试题资料及排名分析信

法 2: 方程 $e^x - a = \frac{1}{x}$ 有两个不同解,画 $g(x) = e^x - a$ 和 $y = \frac{1}{x}$ 的图像有两个交点

(20) (本小题 14分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的焦距为 $4\sqrt{2}$,下顶点 A 和右顶点 B 的距离为 $\sqrt{10}$.

- (I) 求椭圆 C 方程;
- (II) 设不经过右顶点的直线 l: y = kx + m 交椭圆 C 于两点 P, Q ,过点 P 作 x 轴的垂线交直线 AB 于点 D ,交直线 BQ 于 E ,若点 D 为线段 PE 的中点,求证:直线 l 经过定点.

解: (1)由题意得
$$\begin{cases} 2c = 4\sqrt{2} \\ \sqrt{a^2 + b^2} = \sqrt{10} \end{cases}$$
, 得
$$\begin{cases} a = 3 \\ b = 1 \end{cases}$$
.则椭圆 C 方程为 $\frac{x^2}{9} + y^2 = 1$.

(2) 联立
$$\begin{cases} y = kx + m \\ \frac{x^2}{9} + y^2 = 1 \end{cases}$$
 得 $(9k^2 + 1)x^2 + 18kmx + 9m^2 - 9 = 0$, 且 $m \neq -3k$. 设 $P(x_1, y_1)$, $Q(x_2, y_2)$.

则有:

$$\Delta = 256k^2m^2 - 4(9k^2 + 1)(9m^2 - 9) > 0$$
, $x_1 + x_2 = \frac{-18km}{9k^2 + 1}$, $x_1x_2 = \frac{9m^2 - 9}{9k^2 + 1}$.

直线
$$AB: y = \frac{1}{3}x - 1$$
,则 $D(x_1, \frac{1}{3}x_1 - 1)$.

∴
$$k_{BQ} = \frac{y_2}{x_2 - 3} = \frac{kx_2 + m}{x_2 - 3}$$
, ∴ 直线 BQ : $y = \frac{kx_2 + m}{x_2 - 3}(x - 3)$, ∴ $E(x_1, \frac{(kx_2 + m)(x_1 - 3)}{x_2 - 3}$.

∵点 *D* 为线段 *PE* 的中点,∴
$$y_1 + \frac{(kx_2 + m)(x_1 - 3)}{x_2 - 3} = \frac{2}{3}x_1 - 2$$
.

$$\therefore (kx_1 + m)(x_2 - 3) + (kx_2 + m)(x_1 - 3) - \frac{2}{3}(x_1 - 3)(x_2 - 3) = 0$$

$$(2k - \frac{2}{3})x_1x_2 + (m - 3k + 2)(x_1 + x_2) - 6m - 6 = 0$$

$$\frac{(2k - \frac{2}{3})(9m^2 - 9)}{9k^2 + 1} + \frac{-18km(m - 3k + 2)}{9k^2 + 1} - 6m - 6 = 0$$

$$18km^{2} - 18k - 6m^{2} + 6 - 18km^{2} + 54k^{2}m - 36km + (-6m - 6)(9k^{2} + 1) = 0$$

$$18km^2 - 18k - 6m^2 + 6 - 18km^2 + 54k^2m - 36km - 54k^2m - 6m - 54k^2 - 6 = 0$$

关注北京高考在线官方微信 $km = \frac{18k^2 - 6m^2}{6m^2 - 36km} = \frac{18k^2 - 6m^2}{6k^2 - 6m^2} = \frac{18k^2 - 6$

$$(m+3k)(m+3k+1)=0$$

- : $m \neq -3k$, ∴ m = -3k 1, ∴ if k : y = kx + m = kx 3k 1 = k(x 3) 1,
- :. 直线 l 恒过定点 (3,-1).

(21) (本小题 15 分)

已 知 整 数 $n \ge 4$, 数 列 $A: a_1, a_2, \cdots, a_n$ 是 递 增 的 整 数 数 列 , 即 $a_1, a_2, \cdots, a_n \in Z$ 且 $a_1 < a_2 < \cdots < a_n$.定义数列 A 的"相邻数列"为 $B: b_1, b_2, \cdots, b_n$,其中 $b_1 = a_1$, $b_n = a_n$, $b_i = a_{i-1} + 1$ 或 $b_i = a_{i+1} - 1$ $(i = 2, 3, \cdots, n-1)$.

- (I) 已知n=4,数列A:2,4,6,8,写出A的所有"相邻数列";
- (II) 已知 n=10,数列 $A: a_1, a_2, \cdots, a_{10}$ 是递增的整数数列, $a_1=1, a_{10}=20$,且 A 的所有"相邻数列"均为递增数列,求这样的数列 A 的个数;
- (III) 已知 n=20,数列 $A: a_1, a_2, \cdots, a_{20}$ 是递增的整数数列, $a_1=0, a_2=2$,且存在 A 的一个"相邻数列" B,对任意的 $i,j\in\{2,3,\cdots,19\}, a_i+a_i\neq b_i+b_i$,求 a_{20} 的最小值.

解:

- (I) 2,3,5,8; 2,3,7,8; 2,5,5,8; 2,5,7,8.
- (II) 任取 A 的一个"相邻数列" $B: b_1, b_2, ..., b_{10}$.

首先,一定有 $b_1 < b_2 \perp b_9 < b_{10}$.

理由: $b_2 = a_1 + 1 = b_1 + 1 > b_1$ 或 $b_2 = a_3 - 1 \ge a_2 > a_1 = b_1$ 。同理, $b_9 < b_{10}$. 其次,对于 $i \in \{2,3,\ldots,8\}$, b_i,b_{i+1} 的取值分以下 4 种情形:

- (1) $b_i = a_{i-1} + 1, b_{i+1} = a_i + 1,$
- (2) $b_i = a_{i+1} 1$; $b_{i+1} = a_{i+2} 1$,
- (3) $b_i = a_{i-1} + 1, b_{i+1} = a_{i+2} 1,$
- (4) $b_i = a_{i+1} 1, b_{i+1} = a_i + 1$

由数列A是递增的整数数列,**前3种情形都能得到b_i < b_{i+1},**所以**只需考虑第4种情**

形,B递增, $b_i < b_{i+1}$, $a_{i+1} - 1 < a_i + 1$ 即 $a_{i+1} < a_i + 2$, $a_{i+1} \le a_i + 1$,由A是递增的整

数数列得
$$a_{i+1}=a_i+1$$
,从而 a_2,\ldots,a_9 是公差为 1 的等差数列.于是
$$\begin{cases} a_2+7\leq 19\\ a_2\geq 2 &, \exists a_2\in Z \end{cases}$$

{2,3,..,12}, 满足数列 A 的有 11 个:

 $orall_I=\{2,...,19\}, I_1=\{i\in I|b_i=a_{i-1}+1\}, I_2=\{i\in I|b_i=a_{i+1}-1\}, 则I_1\cup I_2=I 且 I_1\cap I_2=\emptyset.$ 先证明 I_1 与 I_2 要么是空集,要么是连续自然数构成的集合.

关注北京**着**诗**看**线 \geq 3方**%**)信:i **一,则** a_i **:** a_{i-1} a_i **:** a_{i-1} a_i **:** a_{i-1} a_i **:** a_{i-1} a_i **:** a_{i-1} **:** $a_{$

i-1 ∉ I_2 ,即i-1 ∈ I_1 . 即 I_1 是空集,或是连续自然数构成的集合.

因此 I_1,I_2 的分布只可能是如下三种情况:

(i) $I_1=\{2,3,...,19\}, I_2=\emptyset$. 此时,对任意的 $i\in\{2,3,...,19\}, b_i=a_{i-1}+1$,由 $a_i\neq b_i$ 得 $a_i\neq a_{i-1}+1$,所以对任意的 $i\in\{2,3,...,19\}, a_i-a_{i-1}\geq 2$,注意到 $a_{20}-a_{19}\geq 1$,所以

$$a_{20} = (a_{20} - a_{19}) + (a_{19} - a_{18}) + \dots + (a_2 - a_1) + a_1 \ge 1 + 2 \times 18 + 0 = 37.$$

等号当且仅当A: 0,2,4,6,,..32,34,36,37时取到.

(ii)存在整数 $k \in \{2,3,...,18\}$,使得 $I_1 = \{2,...,k\}$, $I_2 = \{k+1,...,19\}$

对任意的 $i \in \{2,...,k\}$, $a_i - a_{i-1} \ge 2$, 对任意的 $i \in \{k+1,...,19\}$, $a_{i+1} - a_i \ge 2$, 所以

$$a_{20} = [(a_{20} - a_{19}) + \dots (a_{k+2} - a_{k+1})] + (a_{k+1} - a_k) + [(a_k - a_{k-1}) + \dots + (a_2 - a_1)] + a_1$$

$$\geq 2(19 - k) + 1 + 2(k - 1) = 37$$

(iii) $I_1 = \emptyset$, $I_2 = \{2,3,...,19\}$. 此时,对任意的 $i \in \{2,3,...,19\}$, $b_i = a_{i+1} - 1$,

与情形 1 类似,对任意的 $i \in \{2,3,\ldots,19\}$, $a_{i+1}-a_i \geq 2$,注意到 $a_2-a_1=2$,所以 $a_{20}=(a_{20}-a_{19})+(a_{19}-a_{18})+\ldots+(a_2-a_1)+a_1 \geq 2\times 19=38>37$.

综上, a_{20} 的最小值为37.

请将全部答案都写在答题纸上!

关注北京高考在线官方微信: 京考一点通 (微信号:bjgkzx), 获取更多试题资料及排名分析信息。

北京高一高二高三期末试题下载

京考一点通团队整理了【2024年1月北京各区各年级期末试题&答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期末**】或者点击公众号底部栏目<<mark>试题专区</mark>>,进入各年级汇总专题,查看并下载电子版试题及答案!

Q 京考一点通

