2023 北京高中合格考生物

(第二次)

考 生 须

知


1. 考生要认真填写考场号和座位序号。

- 2. 本试卷共 8 页,分为两个部分。第一部分为选择题,35 个小题(共 50 分);第二部分为非选择题,8个小题(共 50 分)。
- 3. 试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用 2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
- 4. 考试结束后,考生应将试卷和答题卡放在桌面上,待监考员收回。

第一部分(选择题 共50分)

本部分共 35 小题, $1\sim20$ 题每小题 1 分, $21\sim35$ 题每小题 2 分,共 50 分。在每小题列出的四个选项中,选出最符合题目要求的一项。

- 1. 细胞学说揭示了
 - A. 植物细胞与动物细胞的区别
- B. 生物体结构的统一性
- C. 细胞为什么能产生新的细胞
- D. 认识细胞的曲折过程
- 2. 下图表示细胞中发生的水解反应。若生物大分子为蛋白质,则其单体是

- A. 葡萄糖
- B. DNA
- C. 氨基酸
- D. 淀粉
- 3. 痢疾内变形虫是寄生在人体肠道内的一种变形虫,能分泌蛋白酶,溶解人的肠壁组织,引发阿米巴痢疾。该蛋白酶在细胞中的合成场所是
 - A. 溶酶体
- B. 中心体
- C. 核糖体
- D. 高尔基体
- 4. 紫色洋葱鳞片叶外表皮细胞在 0.3g/mL 的蔗糖溶液中发生质壁分离。下图为光学显微镜下观察到的局部图像,其中①~④标注错误的是

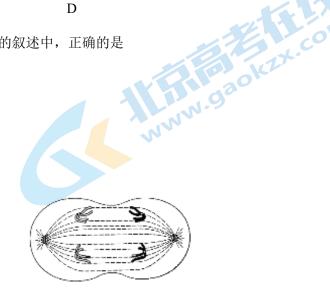
- A. (1)
- B. ②
- C. ③
- D. (4)
- 5. 多酶片的成份见右图说明书。推测此药片的主要功能是
 - A. 构建细胞
 - B. 提供能量
 - C. 杀灭细菌

- D. 帮助消化
- 6. 结合细胞呼吸原理分析,下列日常生活中的做法不合理的是
 - A. 处理伤口选用透气的创可贴
 - B. 定期给花盆中的土壤松土
 - C. 真空包装食品以延长保质期
 - D. 采用快速短跑进行有氧运动
- 7. 叶绿体是光合作用的场所。下图为叶绿体的模式图,其中光反应发生在
 - A. (1)
 - B. ②
 - C. ③
 - D. (4)

- A. 降低室内 CO₂浓度
- B. 保持合理的昼夜温差


C. 适当增加光照强度

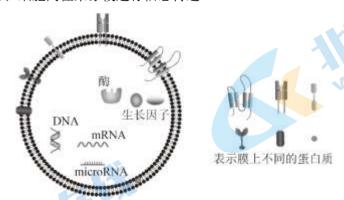
- D. 适当延长光照时间
- 9. 纸层析法可分离光合色素,下列分离装置示意图中正确的是



NWW.9aokzx.co

A

- 10. 正常情况下,下列关于细胞增殖、分化、衰老和凋亡的叙述中,正确的是
 - A. 所有的体细胞都不断地进行细胞分裂
 - B. 细胞分化使基因的碱基序列产生差异
 - C. 细胞分化仅发生于早期胚胎形成过程
 - D. 细胞的衰老和凋亡是自然的生理过程
- 11. 右图为某动物细胞分裂的示意图。该细胞处于
 - A. 有丝分裂中期
 - B. 有丝分裂后期
 - C. 减数第一次分裂后期
 - D. 减数第二次分裂后期
- 12. 四分体是细胞在减数分裂过程中
 - A. 一对同源染色体配对时的四个染色单体
 - B. 互相配对的四条染色体
 - C. 大小形态相同的四条染色体
 - D. 两条染色体的四个染色单体



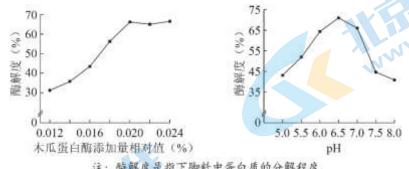
13.	DNA 完全水解后,得到的化学物质是	
	A. 氨基酸、葡萄糖、含氮碱基	B. 核糖、含氮碱基、磷酸
	C. 氨基酸、核苷酸、葡萄糖	D. 脱氧核糖、含氮碱基、磷酸
14.	下列物质或结构的层次关系由大到小的是	 D. 脱氧核糖、含氮碱基、磷酸 B. 染色体→DNA→脱氧核苷酸→基因 D. 基因→染色体→脱氧核苷酸→DNA A 子链
	A. 染色体→DNA→基因→脱氧核苷酸	B. 染色体→DNA→脱氧核苷酸→基因
	C. 染色体→脱氧核苷酸→DNA→基因	D. 基因→染色体→脱 <mark>氧</mark> 核苷酸→DNA
15.	一个 DNA 分子复制完成后,新形成的 DNA	A子链
	A. 是 DNA 母链的片段	B. 与 DNA 母链之一相同
	C. 与 DNA 母链相同,但 U 取代 T	D. 与 DNA 母链完全不同
16.	DNA 携带遗传信息,随机选取的两个个体	有相同遗传信息的可能性极低,因此 DNA 可以像指纹一样
	用来识别身份,这种方法称为 DNA 指纹技	术。此技术不常应用于
	A. 亲子关系鉴定	B. 犯罪嫌疑人确认
	C. 糖尿病的确诊	D. 遇难者残骸确认
17.	某生物的基因型为 AaBb, 这两对基因的遗	遗传符合自由组合定律。该生物测交后代中,与两个亲本基
	因型都不同的个体所占的百分比是	
	A. 25% B. 50%	C. 75% D. 100%
18.	离子束是一种辐射源。用离子束照射番茄和	中子,选育得到的"鲁番茄7号"有早熟、果实大等特点。
	这种育种方式属于	
	A. 诱变育种 B. 多倍体育种	C. 杂交育种 D. 单倍体育种
19.	研究发现, 板足鲎很可能是节肢动物登陆的	的先行者。中国科学家在华南地区距今约 4.3 亿年的地层中
	新发现了一种板足鲎——秀山恐鲎,其第三	三对附肢特化增大、长有硬质长刺,丰富了板足鲎的形态多
	样性,进一步为研究节肢动物的进化提供了	THE STATE OF THE S
	A. 化石证据	B. 细胞水平证据
	C. 胚胎学证据	B. 细胞水平证据 D. 分子水平证据 的个体点 20%, aa 的个体点 10%, A 基因和 a 基因的基因额
20.	某种群中基因型为 AA 的个体占 70%, Aa f	的个体占 20%, aa 的个体占 10%。A 基因和 a 基因的基因频
	率分别是	
	A. 70%、30% B. 50%、50%	C. 90%、10% D. 80%、20%
21.	下列元素中,构成有机物基本骨架的是	
	A. 氮 B. 氢	C. 氧 D. 碳
22.	下列可用于检测蛋白质的试剂及反应呈现的	
	A. 苏丹Ⅲ染液,橘黄色	B. 醋酸洋红液,红色
	C. 碘液,蓝色	D. 双缩脲试剂,紫色
23.	可以与动物细胞的吞噬泡融合,并消化掉吞	
		C. 高尔基体 D. 内质网
24.	真核细胞贮存和复制遗传物质的主要场所是	

	A. 核糖体 B. 内质网	C.	细胞核	D.	高尔基体
25.	细菌被归为原核生物的原因是				
	A. 细胞体积小 B. 单细胞	C.	没有核膜	D.	没有 DNA
26.	下列对酶的叙述中, 正确的是				To oke
	A. 所有的酶都是蛋白质				没有 DNA
	B. 催化生化反应前后酶的性质发生改变				NN
	C. 高温可破坏酶的空间结构, 使其失去活	性			
	D. 酶与无机催化剂的催化效率相同				
27.	一分子 ATP 中,含有的特殊化学键(~)和	和磷	竣基团的数目分别	是	
	A. 2和3 B. 1和3	C.	2和2	D.	4和6
28.	通常,动物细胞有丝分裂区别于高等植物组	II胞7	有丝分裂的是		
	A. 核膜、核仁消失	В.	形成纺锤体		
	C. 中心粒周围发出星射线	D.	着丝粒分裂		
29.	进行有性生殖的生物,对维持其前后代体组	田胞多	染色体数 目恒定起重	重要值	作用的是
	A. 有丝分裂与受精作用	В.	细胞增殖与细胞分	分化	
	C. 减数分裂与受精作用	D.	减数分裂与有丝线	分裂	
30.	肺炎链球菌转化实验中,使R型细菌转化为	հ Տ∄	型细菌的转化因子	是	
	A. 荚膜多糖	В.	蛋白质		
	C. R型细菌的 DNA	D.	S 型细菌的 DNA		
31.	下列各对生物性状中,属于相对性状的是				
	A. 狗的短毛和狗的卷毛	В.	人的右利手和人的	的左え	
	C. 豌豆的红花和豌豆的高茎	D.	羊的黑毛和兔的日	自毛	124.
32.	人类在正常情况下,女性的体细胞中常染色	色体的	的数目和性染色体为	为	44, XY
	A. 22, X B. 22, Y	C.	44, XX	D.	44, XY
33.	一对色觉正常的夫妇生了一个红绿色盲的男	孩。	男孩的外祖父、外	祖長	和祖母色觉都正常,祖父为色盲。
	该男孩的色盲基因来自				
	A. 祖父 B. 祖母	C.	外祖父	D.	外祖母
34	在大田的边缘和水沟两侧,同一品种的小麦	 麦植	朱总体上比大田中	间的	长得高壮。产生这种现象的主要
	原因是				
	A. 基因重组引起性状分离	В.	环境差异引起性料	大变势	早
	C. 隐性基因突变为显性基因	D.	染色体结构和数	目发生	生了变化
35.	果蝇作为实验材料所具备的优点,不包括				
	NV	В.	生长速度快,繁殖	直周其	期短
	C. 具有易于区分的相对性状	D.	子代多, 利于获行	导客)	见的实验结果
	第二部分	(卡选择题 共 50 分)		

本部分共8小题,共50分。

WWW.9aokZX.cor 36. (6 分) 细胞可以分泌物质, 也可以分泌囊泡。外泌体是细胞分泌的一种囊泡, 大小一般为 $30 \sim 100 \text{ nm}$, 其结构如下图。它可在细胞间往来穿梭进行信息传递。

请	П	答	问	颞	:

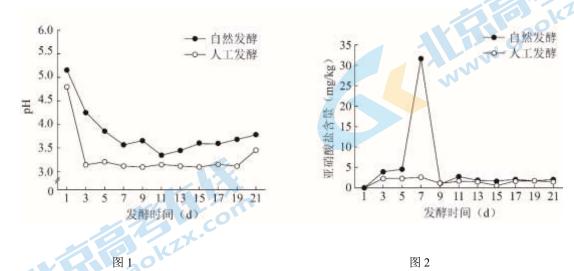

(1) 细胞内的囊泡以	方式被分泌到细胞外成为外泌体。
	カ T (水) ケア ツい 手口を出 用! タト hv . ハノタト ツい 1/4、

	(2)	外泌体膜和细胞膜的结构均以	作为基本支架。
--	-----	---------------	---------

(3)	外泌体可通过其膜上的	与靶细胞受体结合,	将信息传递给靶细胞;	也可以利用膜的
	性与靶细胞膜融合,	将其携带的 microRNA 等	物质释放到靶细胞内。	

4)	microRNA	与靶细胞内相应基因转录形成的	_结合,	使转录产物无法发挥作用,	影响基因的
		进而调控靶细胞的生命活动。			

- 37. (6 分) 带鱼加工过程中产生的下脚料富含优质蛋白, 随意丢弃不仅浪费资源, 还会污染环境。利用木 瓜蛋白酶处理,可以变废为宝。请回答问题:
 - (1) 木瓜蛋白酶可将下脚料中的蛋白质分解为多肽,但不能进一步将多肽分解为氨基酸,体现酶具有 WW.9aokzx.con 性。
 - (2) 为确定木瓜蛋白酶的最适用量和最适 pH,研究人员进行了相关实验,结果如下图。


注: 酶解度是指下脚料中蛋白质的分解程度

%, pH 应为 , 偏酸、偏碱使酶解度降低 据图分析,木瓜蛋白酶添加量应为 的原因可能是

- (3) 若要探究木瓜蛋白酶的最适温度,实验的基本思路是。
- 38. (7分) 酸菜是利用乳酸菌发酵得到的一种传统食品。自然发酵条件下,杂菌较多,酸菜品质变动较大。 为提高酸菜品质及稳定性,研究者在自然发酵条件下添加一定量的干酪乳酸菌进行酸菜发酵(即人工 发酵),并将这两种发酵方法进行比较。请回答问题:
 - (1) 酸菜发酵过程中,需保持 (填"有氧"或"无氧")条件,白菜中的糖类物质在乳酸菌

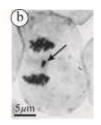
所产酶的作用下,可被分解为 和[H],再转化为乳酸。

(2) 酸度和亚硝酸盐含量是评价酸菜品质的重要指标。研究者检测两种发酵方法的 pH 和亚硝酸盐含量,结果如图 1 和图 2。

①据图 1 可知,发酵初期,人工发酵的 pH 比自然发酵的下降更 ,原因是

②某些杂菌会产生亚硝酸盐。综合图 1、图 2 分析,人工发酵中亚硝酸盐含量未出现明显峰值,其主要原因是发酵初期形成的 环境抑制了杂菌生长。

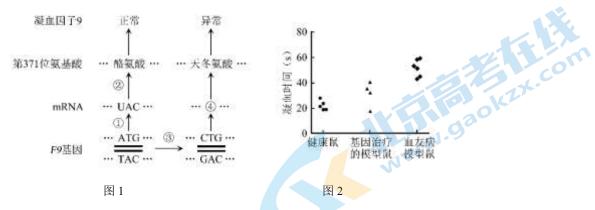

③食品安全标准规定,酱腌菜中亚硝酸盐含量不超过 20mg/kg。据此,食用自然发酵酸菜的安全时间为 天及之后,而人工发酵酸菜不受发酵天数限制。


(3) 除酸度、亚硝酸盐含量外,评价酸菜品质的指标还有____。

39. (6分) 福橘是我国的传统名果,科研人员以航天搭载的福橘茎尖为材料,进行了研究。请回答问题:

(1) 福橘茎尖经组织培养后可形成完整的植株,原因是植物细胞具有______性。此过程发生了细胞的增殖和____。

(2) 为探索航天搭载对细胞有丝分裂的影响,科研人员对组织培养的福橘茎尖细胞进行显微观察。



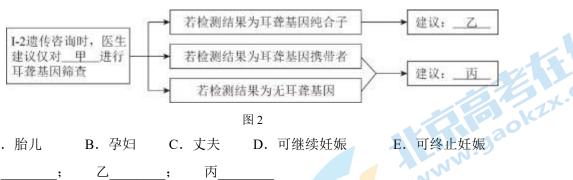
②图中箭头所指位置出现了落后的染色体。有丝分裂过程中,

染色体在_____的牵引下运动,平均分配到细胞两极。落后染色体的出现很可能是其结构异常导致的。

(3) 科研人员发现,变异后的细胞常会出现染色质凝集等现象,最终自动死亡,这种现象称为细胞。因此,若要保留更多的变异类型,还需进一步探索适当的方法。

40. (7分) B型血友病是编码凝血因子 9的 F9基因突变所致的一种遗传病。我国科学家构建了 B型血友病模型鼠,并尝试对模型鼠进行基因治疗,以探索治疗该病的新途径。

正常男


耳聋男

TI

图 1

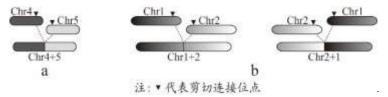
请回答问题:

- (1) 图 1 表示该病的发病机理。其中①过程所需要的酶是______,②过程称为______,③过程表示 F9 基因发生碱基的 而引起碱基序列的改变, ④代表的碱基序列为
- (2) 科学家利用基因编辑技术对 B 型血友病模型鼠的突变基因进行定点"修改",并测定凝血时间, 结果如图 2。结果表明小鼠的凝血能力 , 依据是
- 41. (7分) 耳聋是一种听觉障碍疾病,60%与遗传因素有关。请回答问题:
 - (1) 图 1 为某类耳聋疾病的患者家系图。
 - ①该耳聋基因位于常染色体上。据图 1 分析, 耳聋基因是 基因; II-2 为胎儿, 其患病概率为。。
 - ② I-2 在孕早期进行遗传咨询,请选择合适选项完善图 2 所示的 咨询流程(填字母)。

- A. 胎儿 B. 孕妇 C. 丈夫 D. 可继续妊娠 丙
- (2)除遗传因素外,噪声也能引起耳蜗内毛细胞(无再生能力)损<mark>伤甚至</mark>凋亡进而诱发耳聋,这种耳 聋称为"噪声性耳聋"。研究人员调查了两组人群中不同听力损伤程度的人数,统计结果如下表。

损伤程度 组别 占调查人群的百分比(%)	轻	中	重	极重	全聋
始终未处于噪声环境的人群	8.0	0	0	0	0
长期(≥5年)处于噪声环境的人群	7.2	8.1	5.6	4.4	2.8

- ①据表分析,长期接触噪声可导致。
- ②基于调查结果,请提出合理使用耳机的建议: 。
- 42. (6分) 研究人员用野生一粒小麦与山羊草杂交可获得二粒小麦,过程如下图。



请回答问题:

- NWW.9aokz (1) 野生一粒小麦与山羊草 (填"是"或"不是") 同一物种,判断依据是
- (2) 培育二粒小麦的过程中, 秋水仙素能 细胞分裂过程中纺锤体的形成, 最终使得二粒小麦 的体细胞中染色体的数目变为 条。
- (3) 培育出的二粒小麦是 (填"可育"或"不可育")的。
- 43. (5分) 学习以下材料,请回答(1)~(4)题。

染色体融合与物种演化

在生物演化历程中,啮齿类动物大约经过100万年才会出现3.2~3.5次染色体融合。我国科学家首 次实现了哺乳动物的人工染色体融合。他们将小鼠(2n=40)胚胎干细胞中一条4号染色体和一条5号 染<mark>色</mark>体首尾相连(如图a),获得了Chr4+5的胚胎干细胞;他们还通过不同方式连接细胞中的1号染色 体和2号染色体(如图b),分别获得了Chr1+2和Chr2+1的胚胎干细胞。

利用不同的胚胎干细胞最终培育出113个Chr4+5胚胎、355个Chr1+2胚胎以及365个Chr2+1胚胎, 将这些胚胎分别转移到代孕鼠子宫内。其中Chr2+1胚胎寿命均不足12.5天,无法发育成小鼠,Chr1+2 和Chr4+5的胚胎均能发育成小鼠。研究发现,8周龄的Chr1+2小鼠比野生型焦虑且行动迟缓,而 Chr4+5小鼠的表现与野生型相似。进一步测试这些小鼠的生殖能力,只有Chr4+5小鼠和野生型交配产 生了后代,但生殖成功率明显低于野生型,这反映出染色体融合对新物种的产生可能起重要作用。

尽管本研究对基因中碱基序列的改变比较有限,但小鼠出现的异常行为和繁殖力下降等现象,表 明染色体融合对动物可能会产生重大影响,提示染色体融合是物种演化的驱动力。

- (1) 染色体是真核生物 的主要载体。
- (2) 小鼠的人工染色体融合是可遗传变异来源中的 变异。据文中信息判断,Chr4+5小鼠体细 胞中有 条染色体。
- (3) 依据文中信息,染色体融合对小鼠产生的影响有
- (4) 从进化与适应的角度判断染色体融合是有利变异还是有害变异,并说明理由:。 www.9

参考答案

第一部分 (选择题 共 50 分)

本部分共35小题,1~20题每小题1分,21~35题每小题2分,共50分。

题号	1	2	3	4	5	6	7	8	9	310
答案	В	С	С	С	D	D	С	A	V, C,	D
题号	11	12	13	14	15	16	17	18	19	20
答案	С	A	D	A	В	С	В	A	A	D
题号	21	22	23	24	25	26	27	28	29	30
答案	D	D	В	C	С	С	A	С	С	D
题号	31	32	33	34	35					
答案	В	C	D	В	A					

第二部分 (非选择题 共 50 分)

本部分共8小题,共50分。

- 36. (6分)
 - (1) 胞吐
 - (2) 磷脂双分子层
 - (3) 蛋白质; 流动
 - (4) mRNA; 表达
- 37. (6分)
 - (1) 专一
 - (2) 0.020; 6.5; 酶的空间结构改变, 活性降低
- EE THORON CO. (3) 设置不同温度的处理,分别测定木瓜蛋白酶对下脚料中蛋白质的分解程度
- 38. (7分)
 - (1) 无氧; 丙酮酸
 - (2) ①快; 人工发酵添加的干酪乳酸菌快速繁殖,产生了大量乳酸 ②酸性

(3)9

- (3) 颜色、味道、气味、脆度、营养价值等(合理即可)
- 39. (6分)

 - (2) ①中; 姐妹染色单体 ②纺锤⁴⁴
 - (3) 凋亡
- 40. (7分)

- (1) RNA 聚合酶;翻译;替换;GAC
- (2) 部分恢复:

与血友病模型鼠相比,基因治疗的模型鼠的凝血时间显著缩短,但略长于健康鼠的凝血时间

41. (7分)

- (1) ①隐; 1/4
 - ②A; E; D
- (2) ①听力损伤程度加重
 - ②低频次使用耳机、短时间使用耳机、耳机音量适中(合理即可)

42. (6分)

- (1) 不是;它们杂交的后代不可育,存在生殖隔离 NW.9aokzx.com
- (2)抑制;28
- (3)可育
- 43. (5分)
 - (1) 基因
 - (2) 染色体; 39
 - (3) 胚胎死亡、焦虑、行动迟缓、不能繁殖、繁殖力下降(答出其中一项即可)
 - (4) 观点与理由相符(合理即可)

参考样例:

有害,理由是个体的性状是进化形成的适应性特征,一旦变异通常不适应当前的环境。

有利,理由是对种群而言,染色体融合为生物进化提供原材料,在自然选择的作用下,个别染色 WWW.gaokzx.com 体融合方式可能使个体在新环境中获得生存和繁殖的优势,利于种群的进化和发展。

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 50W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承"精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数干场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

推荐大家关注<mark>北京高考在线网站官方微信公众号:京考一点通</mark>,我们会持续为大家整理分享最新的高中升学资讯、政策解读、热门试题答案、招生通知等内容!

官方微信公众号:京考一点通 咨询热线: 010-5751 5980 官方网站: <u>www.gaokzx.com</u> 微信客服: gaokzx2018