2024 北京石景山高二(上)期末

化. 学

本试卷共8页,100分。考试时长90分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试 结束后,将答题卡交回。

可能用到的相对原子质量:

H 1 C 12 O 16

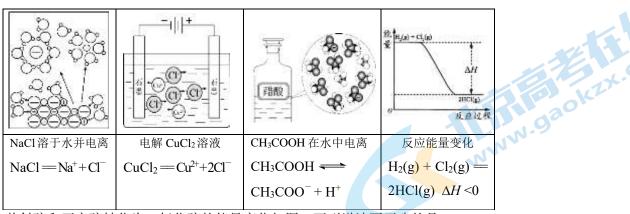
第一部分

本部分共 14 题, 每题 3 分, 共 42 分。在每题列出的四个选项中,选出最符合题目要求的一项。

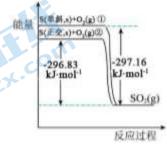
- 1. 下列能源中,不属于清洁能源的是
 - A. 石油
- B. 太阳能
- C. 风能
- D. 潮汐能

- 2. 下列物质中,属于弱电解质的是
 - A. 84 消毒液的有效成分 NaClO
- B. 食品膨松剂小苏打 NaHCO₃
- C. 食醋的有效成分乙酸 CH₃COOH
- D. 白酒的主要成分乙醇 C₂H₅OH
- 3. 下列关于化学反应方向的说法正确的是
 - A. 凡是放热反应都是自发反应
- B. 非自发反应任何条件都不能发生
- C. 凡是熵增大的反应都是自发反应
- D. 反应是否自发与熵变和焓变都有关
- 4. 下列化学用语或图示表达正确的是
 - A. NaCl 的电子式: Na:Cl:
 - B. K+离子的结构示意图:

- C. 基态铜原子(29Cu)的价层电子排布式: 3d104s1
- D. 基态 24Cr 原子的价层电子轨道表示式: [++]++

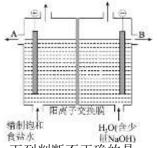

- VW.92012 5. 已知 $4NH_3(g) + 5O_2(g) = 4NO(g) + 6H_2O(g)$,若反应速率分别用 $v(NH_3)$ 、 $v(O_2)$ 、v(NO)、 $v(H_2O)$ 表示, 则正确的关系是
 - A. $4/5v(NH_3) = v(O_2)$

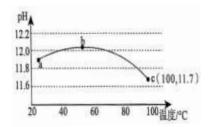
B. $5/6v(O_2) = v(H_2O)$

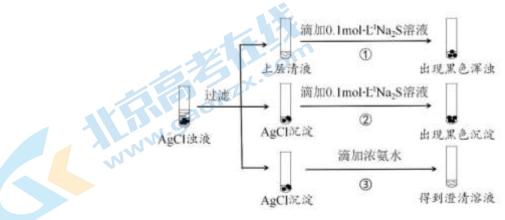

C. $2/3v(NH_3) = v(H_2O)$

- D. $4/5v(O_2) = v(NO)$
- 6. 下列示意图与化学用语表述内容不相符的是(水合离子用相应离子符号表示)


A	В	С	D


7. 单斜硫和正交硫转化为二氧化硫的能量变化如图,下列说法不正确的是


- w.92012 A. $S(s, 单斜) = S(s, 正交) \Delta H = +0.33 \text{ kJ} \cdot \text{mol}^{-1}$
- B. ①式的热化学方程式: $S(s, 单斜) + O_2(g) = SO_2(g) \Delta H = -297.16 \text{ kJ} \cdot \text{mol}^{-1}$
- C. ②式反应断裂 1 mol 正交硫(s)和 1 mol O₂(g)中的共价键吸收的能量比形成 1 mol SO₂(g)中的共价键 所放出的能量少 296.83 kJ
- D. 从热力学的角度看,正交硫比单斜硫稳定
- 8. 下列用于解释事实的化学用语书写不正确的是
 - A. 钢铁发生吸氧腐蚀的正极反应: $O_2 + 2H_2O + 4e^- = 4OH^-$
 - B. Na₂CO₃溶液显碱性从而清洗油污的原理: CO₃²⁻ + 2H₂O → H₂CO₃ + 2OH⁻
 - C. Na₂CO₃溶液处理水垢中 CaSO₄: CaSO₄(s) + CO₃²⁻ (aq) ← CaCO₃(s) + SO₄²⁻ (aq)
 - D. TiCl₄ 水解制备 TiO₂ 的反应原理: TiCl₄ + (x+2)H₂O = TiO₂•xH₂O ↓ + 4HCl
- w.gaokzx.c 9. 在密闭容器中的一定量混合气体发生反应 $xA(g) + yB(g) \longrightarrow z C(g)$, 平衡时测得 A 的浓度为 0.50 $mol \cdot L^{-1}$ 。保持温度不变,将容器的容积扩大到原来的两倍,再达平衡时,测得 A 的浓度为 0.30mol·L-1,下列有关判断正确的是
 - B. 平衡正向移动 C. B的转化率降低 D. 平衡常数减小 A. $x+y \le z$
 - 10. 人工合成氨反应: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ $\Delta H < 0$,在 5 L 密闭容器中进行此反应,30 秒后 NH_3 的 物质的量增加了 0.3 mol。下列说法不正确的是
 - A. 30 秒内 $v(N_2) = 0.001 \text{ mol} \cdot L^{-1} \cdot \text{s}^{-1}$
 - B. 当容器内气体压强不再变化时,反应达到平衡
 - C. 其他条件不变,升高温度能加快反应速率,但降低 N₂的平衡转化率
 - D. 其他条件不变, 使用催化剂能同时提高反应速率和该反应的平衡常数
 - 11. 关于下列各装置图的叙述中不正确的是


- 用装置①精炼铜,则a极为粗铜,电解质溶液为CuSO4溶液
- B. 装置②中锌电极作负极保护了铁电极
- C. 装置③中钢闸门应与外接电源的负极相连
- D. 装置④中的铁发生吸氧腐蚀
- 12. 如图为电解饱和食盐水装置,下列有关说法不正确的是
 - A. Na+通过阳离子交换膜由阳极区进入阴极区
 - B. 电解一段时间后, B口排出浓 NaOH 溶液
 - C. 右侧生成的气体能使湿润的淀粉碘化钾试纸变蓝
 - D. 电解饱和食盐水的离子方程式:

- 13. 某浓度 Na₂CO₃溶液的 pH 随温度的变化如下图所示,下列判断不正确的是

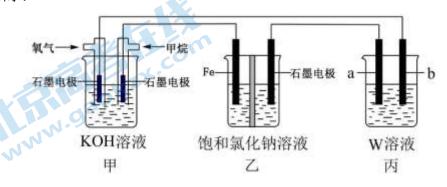
- A. a 点→b 点→c 点, Na_2CO_3 的水解程度逐渐增大
- NNN.9aokz B. b 点开始随温度升高碳酸钠溶液 pH 逐渐降低, 因此碳酸根水解是放热过程
- C. 100℃时, 纯水的 pH=6, c 点溶液中 c(OH⁻)约为 10^{-0.3} mol·L⁻¹
- D. 溶液在 b 点时电荷守恒式: $c(Na^+) + c(H^+) = 2c(CO_3^{2-}) + c(HCO_3^{-}) + c(OH^{-})$
- 14. 己知: Ag⁺ + 2NH₃·H₂O → [Ag(NH₃)₂]⁺+ 2H₂O。将 2 mL 0.1 mol · L⁻¹ AgNO₃ 溶液和 1 mL 0.1 mol · L⁻¹ ¹ NaCl 溶液混合得到浊液,过滤、洗涤后进行如下实验:

下列分析不正确的是

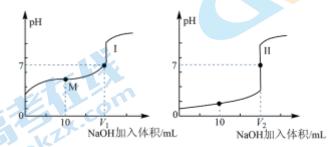
- A. 生成②黑色沉淀的反应是: $2AgCl(s) + S^{2-}(aq) \longrightarrow Ag_2S(s) + 2Cl^-(aq)$
- www.gaokzk B. 生成③澄清溶液的反应是: AgCl + 2NH₃·H₂O ← [Ag(NH₃)₂]⁺ + Cl + 2H₂O
- C. 若向③中的澄清溶液中滴加一定量的硝酸,可能会出现白色沉淀
- D. ①、②的现象都能说明该温度下 Ag2S 比 AgCl 更难溶

第二部分

本部分共5题,共58分。


- 15. (8分) EDTA 是化学中一种良好的配合剂,常用于测定金属离子的含量。EDTA 与 Fe³⁺形成配合物的 结构示意图如下,回答下列问题:
 - (1) 基态 N 原子占据的最高能级的符号是 电子云轮廓是___形的。
 - (2) 基态 Fe³⁺的价层电子排布式为____,按照 核外电子排布,把元素周期表划分为五个区,长江了
 - (3) 该物质中 C、H、N、O 的电负性由大到小的顺序是
 - (4) 比较 N 与 O 第一电离能的大小并从原子结构的角度分析。
- 16. (10分) 电池为我们的生活带来了极大的便利,在生产生活中发挥着重要作用。
 - (1) 纽扣电池是一种携带方便的微型银锌电池, 其结构如图所示:

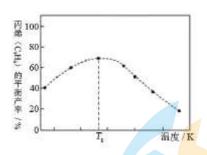
放电时正极材料 Ag2O 变为银单质,写出正极电极反应式


(2) 铅蓄电池是传统汽车中使用的启动电源,其工作原理为:

(3) 燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置。用 CH4燃料电池连接装置 如图所示:

写出甲烷燃料电池负极的电极反应式

- ② 乙池中石墨电极作___极(填"阳"或"阴"),当有 1 mol 甲烷发生反应时,理论上生成 Cl₂ 的物质的量为 。
- ③ 若丙中要实现铁上镀铜,则电解质溶液 W 为___溶液,为补充电解质溶液中的阳离子,b 电极材料为___。
- 17. (12分)食醋是日常饮食中的一种重要的调味剂,其主要成分是乙酸(CH₃COOH)。
 - (1) 用 0.1 mol·L⁻¹ NaOH 溶液分别滴定 20.00 mL 浓度均为 0.1 mol·L⁻¹ 的盐酸和醋酸溶液,得到溶液 pH 随加入 NaOH 溶液体积而变化的两条滴定曲线。



- ① 滴定醋酸的曲线是___(填"I"或"II")。
- ② 滴定开始前,三种溶液中由水电离出的 c(H⁺)最大的是。
- ③ V₁和 V₂的关系: V₁___V₂ (">" 、 "=" 或 "<")。
- ④ M 点对应的溶液中各离子的物质的量浓度由大到小的顺序是___。
- (2) 国家标准规定酿造食醋中醋酸含量标准为 $3.5\sim5.0$ g / 100mL。将食用白醋稀释至原浓度的十分之一得待测白醋溶液。用 0.10 mol·L-1标准 NaOH 溶液滴定某品牌白醋样品的数据如下。

滴定次数	1	2	3		
V(样品)/mL	20.00	20.00	20.00		
V _{消耗} (NaOH)/mL	15.00	15.04	14.96		

- ① 用酚酞做指示剂,滴定终点的现象是___。
- ② 按表中数据处理,转换为原市售白醋中醋酸的含量为___g/100mL (保留两位有效数字),可知该白醋符合国家标准。
- ③ 若测定结果偏高, 其原因可能是 (填字母序号)。
 - A. 滴定过程中振摇时锥形瓶中有液滴溅出
 - B. 碱式滴定管未用标准 NaOH 溶液润洗就直接注入标准 NaOH 溶液
 - C. 碱式滴定管的尖嘴在滴定前有气泡,滴定后气泡消失
- 18. (14分) 丙烯是应用广泛的化工原料, 工业上两种利用丙烷制备丙烯的反应如下:
 - I. 丙烷直接脱氢: $C_3H_8(g)$ $\longrightarrow C_3H_6(g) + H_2(g)$ $\Delta H_1 = +128 \text{ kJ} \cdot \text{mol}^{-1}$
 - II. 氧化丙烷脱氢: $2C_3H_8(g) + O_2(g) \longrightarrow 2C_3H_6(g) + 2H_2O(g) \Delta H_2 = -238 \text{ kJ} \cdot \text{mol}^{-1}$ 回答下列问题:
 - (1) 反应 $2H_2(g) + O_2(g) = 2H_2O(g)$ $\Delta H = _kJ \cdot mol^{-1}$ 。
 - (2) 一定条件下,向 1 L 实验容器中充入 1 mol 气态 C_3H_8 发生反应I。其中主要副反应为:III.丙烷裂解: $C_3H_8(g)$ $CH_4(g)+C_2H_4(g)$ $\Delta H_3=+81$ kJ·mol⁻¹

下图为测得不同温度下 C₃H₆的平衡产率:

NWW.9aokZX

温度高于 T_0 , C_3H_6 的平衡产率随温度升高而减小的原因是。

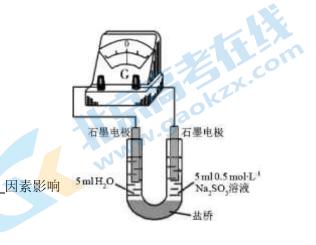
(3)运用丙烷直接脱氢法,在相同温度和催化剂条件下,体积均为0.5L的恒容密闭容器中只发生反应 I,测得反应的有关数据如下:

-				
容器	起始日	达平衡时体系		
编号	C ₃ H ₈ (g)	$C_3H_6(g)$	$H_2(g)$	的能量变化
a	0	1 1	1	放热 32 kJ
b	122	0	0	吸热 Q kJ
c	0.2	0.8	0.8	$\Delta H_{ m c}$

- ① 容器 a 达到平衡时 $C_3H_8(g)$ 的平衡浓度为 $c(C_3H_8) = ____,平衡常数为____。$
- ② 容器 b 经过 5 分钟达到平衡,则用 $C_3H_8(g)$ 表示化学反应速率 $\nu(C_3H_8) = _____$,反应吸收热量 Q 为 kJ。
- ③ 容器 c 达到平衡时, 反应对外 (填吸收或放出)热量。
- 19. (14分)某化学小组同学对 FeCl₃溶液与 Na₂SO₃溶液的反应进行探究

	实验操作	现 象	14.13
		溶液由棕黄色变为红色,无	3/10
1	U O	沉淀生成。	TX.C
	5ml 0.5 mol • L⁻¹ FeCl₃ 溶液	放置 6 小时后,溶液变为淡	VI aok
	(pH约为 1.5)	黄色,始终无沉淀生成。	LNW.9
	膏 滴加 5 滴 0.5 mol・L⁻¹ FeCl₃溶液	溶液由棕黄色变为红 <mark>色</mark> ,无	W
2		沉淀生成。	
	5ml 0.5 mol·L ⁻¹ Na ₂ SO ₃ 溶液	放置 6 小时后,生成红褐色	
	(pH约为10)	沉淀,上层清液为无色。	

- (1) 请用离子方程式表示 Na₂SO₃ 溶液显碱性的原因。
- (2) 甲同学认为实验①发生了氧化还原,其反应的离子方程式为_____,取反应后的溶液中加入 K₃[Fe(CN)₆]溶液,观察到___(填现象),证实了此结论。
- (3) 乙同学检验红褐色沉淀为 Fe(OH)3, 请用平衡移动原理解释生成沉淀的原因。
- (4) 丙组同学检验实验②中无 Fe²⁺,为探究此浓度下是否能发生氧化还原反应,做了如下实验:向 U型管的左侧加入____,


观察到___(填实验现象),证实此浓度下

的 FeCl₃溶液与 Na₂SO₃溶液可以发生氧化还原反应。

(5) 查阅资料已知: Fe³⁺、OH⁻、SO₃²⁻可形成难电 离的红色配合物:

 $HOFeOSO_2$ (红色) $Fe^{3+} + OH^- + SO_3^{2-}$ 请解释实验②中无 Fe^{2+} 生成的原因___。

(6) 通过以上探究, $FeCl_3$ 溶液与 Na_2SO_3 溶液的反应受_ (至少写出两项)。

参考答案

第一部分共14题,每题3分,共42分。

题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 A C D C D B A B C D B C B D 第二部分共5题,共58分。 15. (8分)(其它合理答案酌情给分)	第一	-部分	共 14 ;	题,每	≨题3∮	分,共	42分。	o	参:	考答	案			
No.		·	1 A						7 A			 	12 C	30
(1)(2分)2p, 哑铃形	15. ((8分) (其	它合理	里答案		合分)					5		WW W.

第二部分共5题,共58分。

- 15. (8分)(其它合理答案酌情给分)
- (1)(2分)2p, 哑铃形
- (2)(2分)3d⁵,d区
- (3)(2分)O>N>C>H
- (4) (2分) N 原子的价电子排布式为 $2s^22p^3$, O 原子的价电子排布式为 $2s^22p^4$, N 原子是半充满结构,比 较稳定,故第一电离能较大。
- 16. (10分)(其它合理答案酌情给分)
- (1) (2分) $Ag_2O + H_2O + 2e^- = 2Ag + 2OH^-$
- (2) (2分) Pb, 减小
- (3) ① (2分) $CH_4 8e^- + 10OH^- = CO_3^2 + 7H_2O$
 - ② (2分) 阳极, 4 mol
 - ③(2分)硫酸铜溶液(或铜氨溶液),铜
- 17. (12分)(其它合理答案酌情给分)
- (1) ① (1分) I
- (2)①(2分)当滴入最后一滴 NaOH 溶液时,溶液由无色变浅红色且半分钟内不褪色②(2分)4.5
 ③(2分)BC
- 18. (14分)(其它合理答案酌情给分)
- (1)(2分)-494
- (2) (2 %) 温度高于 T_0 时,温度对反应 III 的影响更大,反应 III 变为主反应,因此乙烯的产率逐渐下降
- (3) ① (4分) 0.5 mol·L⁻¹, 4.5
 - ② (4分) 0.3 mol·L⁻¹·min⁻¹, 96
 - ③ (2分)放出
- 19. (14分)(其它合理答案酌情给分)
- (1) (2分) $SO_3^{2-} + H_2O \Longrightarrow HSO_3^{-} + OH_{-}$
- (2) (2 %) 2Fe³⁺ + SO₃²⁻ + H₂O = 2Fe²⁺ + SO₄²⁻ + 2H⁺

- (1分) 蓝色沉淀
- (3)(2分)铁离子水解显酸性 FeCl₃ + 3H₂O ← Fe(OH)₃+3H⁺, 亚硫酸根水解显碱性, 与氢离子反应, 促使铁离子水解不断正移, 从而生成沉淀。(或亚硫酸根与氢离子结合生成 HSO₃, 促使铁离子水解不断正移, 从而生成沉淀。)
- (4) (1分) 5滴 0.5 mol · L-1 FeCl₃溶液
 - (2分) 电流表指针偏转, U型管左侧溶液变浅, 加入铁氰化钾溶液变为蓝色沉淀
- (5) (2 分) 向亚硫酸钠滴加氯化铁,快速形成红色配合物 HOFeOSO₂,降低了 Fe³⁺的浓度,使其氧化性降低,因此不发生氧化还原。
- (6)(2分)物质的量浓度(或物质的量的相对多少)、滴加顺序、溶液 pH、反应装置、反应物是否接触等(写出任意两个合理答案给2分)

北京高一高二高三期末试题下载

京考一点通团队整理了【2024年1月北京各区各年级期末试题&答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期末**】或者点击公众号底部栏目<<mark>试题专区</mark>>,进入各年级汇总专题,查看并下载电子版试题及答案!

Q 京考一点通

