2023 北京日坛中学高一(上)期中

数学

WWW.9201

(本试卷共 4 页, 考试时间 120min, 满分 150 分)

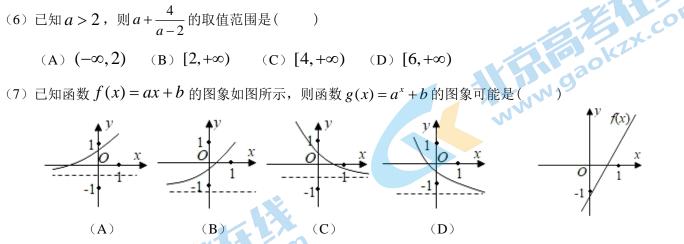
命题人: 赵青 复核人: 贾卓琴 侯立俊

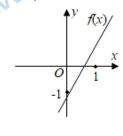
一、选择题:每小题 4 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.

- (1) 设集合 $A = \{x \mid -1 < x < 2\}, B = \{0,1,2\}$, $\emptyset A \cap B = \{x \mid -1 < x < 2\}, B = \{0,1,2\}$, $\emptyset A \cap B = \{x \mid -1 < x < 2\}, B = \{0,1,2\}$

- (A) $\{0\}$ (B) $\{0,1\}$ (C) $\{0,1,2\}$ (D) $\{-1,0,1,2\}$
- (2) 已知命题 $p: \forall x < -1, x^2 > 1$ 则 $\neg p$ 是(
 - (A) $\exists x < -1, x^2 \le 1$ (B) $\forall x \ge -1, x^2 > 1$ (C) $\forall x < -1, x^2 > 1$ (D) $\exists x \le -1, x^2 \le 1$.
- (3) 下列函数中,是奇函数且在区间(0,+∞)上单调递减的是(
- (B) $y = x^{\frac{1}{2}}$ (C) $y = \log_{0.5} x$ (D) $y = x^{-1}$
- (4) 若a > b ,则下列不等式一定成立的是(

- (A) $a^2 > b^2$ (B) $2^a > 2^b$ (C) $a^{\frac{1}{2}} > b^{\frac{1}{2}}$ (D) $\frac{1}{a} < \frac{1}{h}$
- (5) 已知 $a,b \in \mathbf{R}$,则"a > b"是" $\frac{a}{b} > 1$ "的(
 - (A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件(D) 既不充分也不必要条件
- (6) 已知 a > 2,则 $a + \frac{4}{a + 2}$ 的取值范围是(





- ,则满足 f(x) = 0 的 x 的个数为((8) 已知函数f(x)=
- (B) 1
- (C) 2
- (D) 3
- (9) 区块链作为一种革新的技术,已经被应用于许多领域,包括金融、政务服务、供应链、版权和专利、 能源、物联网等. 在区块链技术中,若密码的长度设定为 256 比特,则密码一共有 2²⁵⁶ 种可能,因此, 为了破解密码,最坏情况需要进行 2^{256} 次哈希运算. 现在有一台机器,每秒能进行 2.5×10^{11} 次哈希运 算,假设机器一直正常运转,那么在最坏情况下,这台机器破译密码所需时间大约为(

(参考数据 $\lg 2 \approx 0.3010, \lg 3 \approx 0.477$)

- (A) 4.5×10⁷³秒 (B) 4.5×10⁶⁵秒 (C) 4.5×10⁷秒 (D) 28 秒

(10) 已知正整数 x_1, x_2, \cdots, x_{10} 满足当i < j ($i, j \in \mathbf{N}^*$) 时, $x_i < x_j$,且 $x_1^2 + x_2^2 + \cdots + x_{10}^2 \le 2020$, WWW.gaoki 则 $x_9 - (x_1 + x_2 + x_3 + x_4)$ 的最大值为(

- (A) 19 (B) 20 (C) 21
- (D) 22

二、填空题: 共6小题, 每小题5分, 共30分.

(11) 函数
$$y = \sqrt{x} + \frac{1}{x-1}$$
 的定义域是_____.

(12) 若幂函数 $f(x) = x^{\alpha}$ 图象过点 $(3,\sqrt{3})$,则 f(9) 的值为____

(13) 已知函数
$$f(x) = \begin{cases} \frac{1}{x}, & x \ge 1, \\ x & \text{则 } f(-2) = \underline{}; \\ 2^x, & x < 1. \end{cases}$$
 ,则实数 t 的取值范围_____.

(14) 函数 f(x) 的定义域为 D, 给出下列两个条件:

- ① 对于 $x_1, x_2 \in D$, 当 $x_1 \neq x_2$ 时, 总有 $f(x_1) \neq f(x_2)$;
- ② f(x) 在定义域内不是单调函数.

请写出一个同时满足条件①②的函数 f(x) ,则 f(x) =_____

- (15) 已知函数 $f(x) = x + \frac{4}{x} a \ (a \in \mathbf{R})$, $g(x) = -x^2 + 4x + 3$, 在同一平面直角坐标系里, 函数 f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是
- (16) 已知函数 $f(x) = \frac{x}{x^2 + 1}$. 关于 f(x) 的性质, 有以下四个推断:
 - ① f(x) 的定义域是 $\{x \mid x \neq \pm 1\}$; ② f(x) 是奇函数;
 - ③ f(x) 在区间(0,1) 上单调递增; ④ f(x) 的值域是 $[-\frac{1}{2},\frac{1}{2}]$.

其中推断正确的是 ____

三、解答题: 共 5 小题, 共 80 分. 解答应写出文字说明, 演算步骤或证明过程

(17) (本小题 15分)

已知全集 $U = \mathbf{R}$,集合 $A = \{x \mid 2a < x < a + 2\}$, $B = \{x \mid 2 < 2^x < 16\}$.

- (I) 若a=1, 求 $A \cup B$, $(C_R A) \cap B$;
- (II) 若 $A \cup B = B$, 求实数a的取值范围.
- (18) (本小题 17分)

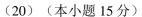
已知函数 $f(x) = \frac{2x+1}{x+1}$

- (I) 用定义证明 f(x) 在区间 $[1,+\infty)$ 上是增函数;
- (II) 求该函数在区间[2,4]上的最大值与最小值;

- (III) 直接写出函数的值域(不需要写解答过程).
- (19) (本小题 18分)

已知函数 $f(x) = x^2 - 2ax - 3$.

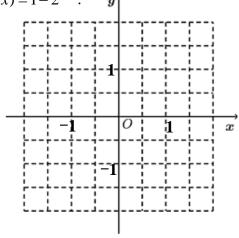
- (I) 若a=1, 求不等式 $f(x) \ge 0$ 的解集;
- (II) 已知 f(x) 在[3,+ ∞)上单调递增,求实数 a 的取值范围;
- (III) 求 f(x) 在[-1,2]上的最小值.



已知函数 f(x) 是定义在 R 上的奇函数,当 x > 0 时, $f(x) = 1 - 2^{-x}$.

- (I)作出函数f(x)的图象;
- (II) 直接写出 f(x) 的单调区间;
- (III) 若函数 f(x) 是定义域为(-3,3),

求不等式 f(2x-3)+f(x+2)>0的解集.



WWW.9aokzx.

(21) (本小题 15分)

已知函数 f(x) 的图象在定义域 $(0,+\infty)$ 上连续不断. 若存在常数 T>0 , 使得对于任意的 x>0f(Tx) = f(x) + T 恒成立,称函数 f(x) 满足性质 P(T).

- (I) 若 f(x) 满足性质 P(2), 且 f(1) = 0, 求 $f(4) + f(\frac{1}{4})$ 的值;
- (II) 若 $f(x) = \log_{1,2} x$, 试说明至少存在两个不等的正数 T_1, T_2 , 同时使得函数 f(x) 满足性质 $P(T_1)$ www.g 和 $P(T_2)$. (参考数据: $1.2^4 = 2.0736$)
- (III) 若函数 f(x) 满足性质 P(T), 求证: 函数 f(x) 存在零点.

参考答案

- 一、单项选择题: BADBD DBCBA
- 二、填空题(共6小题,每小题5分,共30分)
- (11) $[0,1) \bigcup (1,+\infty)$ (12) 3 (13) $\frac{1}{4}$; [-1,2]
- (14) $\frac{1}{x}$ (答案不唯一) (15) $\{a|a>-3\}$ (16) ②③④
- 三、解答题(共6小题,共85分)
- (17) (15分)
- (I) a=1时, A=(2,3), B=(1,4), $\mathbb{C}_{\mathbb{R}}A=(-\infty,2]\cup[3,+\infty)$

$$A \cup B = (1,4)$$
, $(C_R A) \cap B = (1,2] \cup [3,4)$

- $(| | |) A \cup B = B, A \subseteq B$

综上: a 取值范围是 $\left[\frac{1}{2}, +\infty\right)$

- (18) (15分)
- (I) 任取 $x_1, x_2 \in [1, +\infty)$, 且 $x_1 < x_2$,

则
$$f(x_1) - f(x_2) = \frac{2x_1 + 1}{x_1 + 1} - \frac{2x_2 + 1}{x_2 + 1} = \frac{x_1 - x_2}{(x_1 + 1)(x_2 + 1)}$$
,

因为 $x_1 < x_2$,所以 $x_1 - x_2 < 0$, $(x_1 + 1)(x_2 + 1) > 0$,所以 $f(x_1) - f(x_2) < 0$,即 $f(x_1) < f(x_2)$,故函数f(x)在区间 $[1, +\infty)$ 上是增函数. 由(I)知函数f(x)在区间[2,4] 上是增函数

(II)由(I)知函数f(x)在区间[2,4]上是增函数,

所以
$$f(x)_{\text{max}} = f(4) = \frac{2 \times 4 + 1}{4 + 1} = \frac{9}{5}$$
, $f(x)_{\text{min}} = f(2) = \frac{2 \times 2 + 1}{2 + 1} = \frac{5}{3}$.

(III) 由题意,函数 $f(x) = \frac{2x+1}{x+1} = \frac{2(x+1)-1}{x+1} = 2 + \frac{-1}{x+1}$,

因为
$$-\frac{1}{x+1} \neq 0$$
,所以 $-\frac{1}{x+1} + 2 \neq 2$,

所以 f(x) 的值域为 $(-\infty, 2) \cup (2, +\infty)$. (19) (15 分)

- (I) $x^2-2x-3\ge0$, ∴ $x\le-1$ 或 $x\ge3$, $A=\{x \mid x\le-1$ 或 $x\ge3\}$

- (II) 对称轴 x = a, $a \le 3$, $\therefore a$ 取值范围 $(-\infty, 3]$
- (III) ① <math> <math>

②
$$\pm -1 < a < 2$$
时, $f(x)_{min} = f(a) = -a^2 - 3$;

③当
$$a \ge 2$$
时, $f(x)_{\min} = f(2) = 1 - 4a$.

综上:略

- (20) (13分)
- (I) 见右图
- (Ⅱ) f(x)的递增区间为 $(-\infty, +\infty)$, 无递减区间.

$$(\iiint) : f(2x-3) + f(x+2) > 0$$

$$: f(2x-3) > f(x+2) : f(2x-3) = f(x+3) = f(x+$$

$$f(2x-3) > -f(x+2)$$
 $f(2x-3) > f(-x-2)$

$$\therefore 2x-3>-x-2 \qquad \therefore x>\frac{1}{3} \quad \text{所有不等式解集为} \left(\frac{1}{3},+\infty\right)$$

(I) 因为 f(x) 满足性质 P(2),

所以对于任意的
$$x > 0$$
, $f(2x) = f(x) + 2$ 恒成立.

又因为
$$f(1)=0$$
,

所以,
$$f(2) = f(1) + 2 = 2$$
,

$$f(4) = f(2) + 2 = 4,$$

曲
$$f(1) = f(\frac{1}{2}) + 2$$
 可得 $f(\frac{1}{2}) = f(1) - 2 = -2$,

曲
$$f(\frac{1}{2}) = f(\frac{1}{4}) + 2$$
 可得 $f(\frac{1}{4}) = f(\frac{1}{2}) - 2 = -4$,

所以,
$$f(4) + f(\frac{1}{4}) = 0$$
.

.......6分WW.9aokzX.c (II) 若正数T 满足 $\log_{1.2}(Tx) = \log_{1.2}x + T$,等价于 $\log_{1.2}T = T$ (或者 $1.2^T = T$),

显然
$$g(1) > 0$$
, $g(2) = 2 - \log_{12} 2 = \log_{12} 1.44 - \log_{12} 2 < 0$,

因为
$$1.2^4 > 2$$
,所以 $1.2^{16} > 16$, $16 > \log_{12} 16$,即 $g(16) > 0$.

因为g(x)的图像连续不断,

所以存在
$$T \in (1,2)_1$$
, $T_2 \in (2,16)$, 使得 $g(T_1) = g(T_2) = 0$,

因此,至少存在两个不等的正数 T_1 , T_2 , 使得函数 f(x) 同时满足性质 $P(T_1)$ 和 $P(T_2)$.

(III) ① 若 f(1) = 0,则 1 即为 f(x) 的零点;

② 若 f(1) = M < 0, 则 f(T) = f(1) + T, $f(T^2) = f(T) + T = f(1) + 2T$, ...,

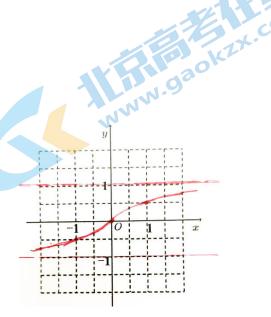
可得
$$f(T^k) = f(T^{k-1}) + T = f(1) + kT$$
, 其中 $k \in \mathbb{N}_+$.

取
$$k = [\frac{-M}{T}] + 1 > -\frac{M}{T}$$
 即可使得 $f(T^k) = M + kT > 0$.

所以, f(x) 存在零点.

③ 若
$$f(1) = M > 0$$
,则由 $f(1) = f(\frac{1}{T}) + T$,可得 $f(\frac{1}{T}) = f(1) - T$,

曲
$$f(\frac{1}{T}) = f(\frac{1}{T^2}) + T$$
,可得 $f(\frac{1}{T^2}) = f(\frac{1}{T}) - T = f(1) - 2T$, ...,



曲 $f(\frac{1}{T^{k-1}}) = f(\frac{1}{T^k}) + T$,可得 $f(\frac{1}{T^k}) = f(\frac{1}{T^{k-1}}) - T = f(1) - kT$,其中 $k \in \mathbb{N}_+$.

取 $k = \left[\frac{M}{T}\right] + 1 > \frac{M}{T}$ 即可使得 $f(\frac{1}{T^k}) = M - kT < 0$. 所以, f(x) 存在零点.

综上,f(x)存在零点.

.....10分

www.gaokzx.com

www.gaokzx.com

北京高一高二高三期中试题下载

京考一点通团队整理了【2023 年 10-11 月北京各区各年级期中试题 &答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期中**】或者点击公众号底部栏目<**试题专区**>,进入各年级汇总专题,查看并下载电子版试题及答案!

