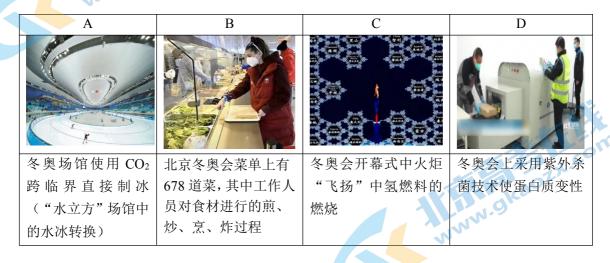
门头沟区 2022 年高三年级综合练习(一) 2022. 3 024.

化学试卷

考生

- 1. 本试券共10页, 共100分, 考试时长90分钟。
- 2. 请将条形码粘贴在答题卡相应位置处。

须知


3. 试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。请使用 2B 铅笔填涂,用黑色字迹签字笔或钢笔作答。

可能用到的相对原子质量: H1 C12 N14 O16 Na23 S32

第一部分 选择题 (共 42 分)

本部分共14小题,每小题3分,共42分。在每小题列出的四个选项中,选出最符合题目要 求的一项。

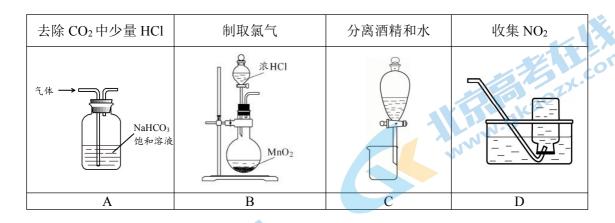
1. 第24届冬季奥林匹克运动会在北京市和张家口市成功举办。下列不属于化学变化的是

- 2. 下列化学用语或表示不正确的是
 - A. 甲基的电子式: H: ;;
 - B. 乙烯的分子结构模型:
 - C. 中子数为 18 的氯原子: 3.5Cl
 - D. 基态 Cr 的电子排布式: 1s²2s²2p⁶3s²3p⁶3d⁴4s²

高三化学试卷第1页(共10页)

3. 下列表述不正确的是

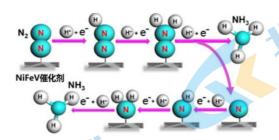
- A. 原子轨道能量: 1s < 2s < 3s < 4s
- B. M 电子层存在 3 个能级、9 个原子轨道
- C. 4s 电子能量较高, 总是在比 3s 电子离核更远的地方运动
- D. 同一周期,碱金属元素的第一电离能最小,最容易失<mark>电子</mark>
- 4. 将 H₂S 和空气的混合气体通入 FeCl₃、FeCl₂、CuCl₂ 的混合溶液中反应回收 S, 其物质转化如


www.gkaozk.

图所示。下列叙述不正确的是

- A. H₂S 和空气通过上述循环的目的是降低活化能, 提高总反应速率
- B. 在转化过程中能循环利用的物质是 FeCl₃ 和 CuCl₂
- C. 该过程的总反应式为: 2H₂S + O₂ ^{催化剂} === 2H₂O + 2S↓
- D. 若有 $1 \mod H_2S$ 发生图示转化的同时消耗 O_2 为 $0.4 \mod$,

则混合液中 Fe3+浓度增大


5. 下列装置能达到相应实验目的的是

- 6. 设 NA 为阿伏加德罗常数的值, 下列说法正确的是
 - A. 1 L 0.2 mol·L⁻¹ NH₄Cl 溶液中, NH₄ 的数目为 0.2N_A
 - B. 标准状况下, $11.2 L CCl_4$ 含共用电子对数为 $2N_A$
 - C. 24g正丁烷和5g异丁烷的混合物中含共价键数目为6.5NA
 - D. 等质量的 O_2 和 O_3 中,所含电子数之比为 2:3

高三化学试卷第2页(共10页)

7. 近期,我国研究人员报道了温和条件下实现固氮的一类三元 NiFeV 催化剂,下图为其电催化固氮的机理示意图。以下关于该电催化机理过程的描述不正确的是

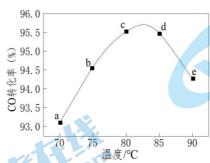
- A. 反应在酸性条件下进行
- B. 反应过程涉及 N₂ 的氧化反应
- C. 1个 N₂分子反应生成 2个 NH₃分子
- D. 反应分多步进行,中间产物为几种不同的氮氢化物
- 8. 下列用于解释实验事实的离子方程式不正确的是

 - B. 向 NaHCO₃ 溶液中加入少量澄清石灰水,有白色沉淀生成:

$$2HCO_3 + Ca^{2+} + 2OH = CaCO_3 \downarrow + CO_3^2 + 2H_2O$$

- C. FeSO₄溶液滴入溴水中, 溴水颜色变浅: 2Fe²⁺+ Br₂ === 2Fe³⁺ + 2Br⁻
- D. 苯酚钠溶液中通入少量 CO₂ 气体,溶液变浑浊: C₆H₅O⁻ + CO₂ + H₂O == C₆H₅OH + HCO₃
- 9. 已知[Co(H₂O)₆]²⁺呈粉红色, [CoCl₄]²⁻呈蓝色, [ZnCl₄]²⁻为无色。现将 CoCl₂溶于水,加入浓盐酸后,溶液由粉红色变为蓝色,存在以下平衡:

 $[Co(H_2O)_6]^{2+}+4Cl^ \Longrightarrow$ $[CoCl_4]^{2-}+6H_2O$ ΔH ,将该溶液分为三份做实验,溶液的颜色变化如下:


装置	序号	操作	现象
	1)	将试管置于冰水浴中	
	2	加水稀释	溶液均呈粉红色
蓝色溶液	3	加少量 ZnCl2 固体	

以下结论和解释正确的是

- A. 等物质的量的 $[Co(H_2O)_6]^{2+}$ 和 $[CoCl_4]^{2-}$ 中 σ 键数之比为 3:2
- B. 由实验①可知: $\Delta H < 0$, 由实验②可推知加水稀释,浓度商 O < K,平衡逆向移动
- C. 由实验③可知: Zn²⁺络合 Cl⁻能力比 Co²⁺络合 Cl⁻能力弱
- D. 实验①②③可知: 配合物的形成与温度、配体的浓度及配体的种类等有关

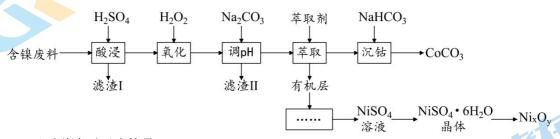
高三化学试卷第3页(共10页)

10. 工业上可通过甲醇羰基化法制取甲酸甲酯: CH₃OH(g) + CO(g) ➡ HCOOCH₃(g), 在容积固 定的密闭容器中,投入等物质的量 CH₃OH 和 CO,测得相同时间内 CO 的转化率随温度变化 ww.gkac 如图所示,下列说法正确的是

- A. 反应速率 *v*_b > *v*_d
- B. 由图可知生产时反应温度控制在80~85℃为宜
- C. 向该容器中充入N₂, CH₃OH 的转化率增大
- D. $d \rightarrow e$, CO 的转化率随温度的升高而减小,是因为该反应是吸热反应,升高温度反应 正向移动
- 高聚物 A 在生物医学上有广泛应用。以 N-乙烯基吡咯烷酮(NVP)和甲基丙烯酸β-羟乙酯 (HEMA)为原料合成路线如下:

下列说法正确的是

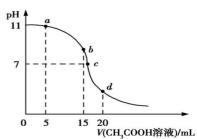
- A. HEMA 具有顺反异构
- B. 1mol 高聚物 A 可以与 2mol NaOH 反应
- C. NVP 分子式为 C₆H₉NO
- D. HEMA 和 NVP 通过缩聚反应生成高聚物 A



高三化学试卷第4页(共10页)

12. 下表中的实验操作能达到实验目的或能得出相应结论的是

选项	实验操作	实验目的或结论
A	向 2mL 0.1mol·L ⁻¹ MgCl ₂ 溶液中加入 5 mL 0.1 mol·L ⁻¹ NaOH 溶液,出现白色沉淀后,继续滴入几滴 FeCl ₃ 浓溶液,静置,出现红褐色沉淀	
В	向某溶液中滴加少量 KSCN 溶液,无现象,再滴加几滴 新制氯水,溶液变红	该溶液中含有 Fe ²⁺
С	向 BaCl ₂ 溶液中通入 SO ₂ 和 X 气体,产生白色沉淀	气体 X 一定具有强氧化性
D	室温下,用 pH 试纸测得: 0.1 mol·L ⁻¹ Na ₂ SO ₃ 溶液 pH 约为 10, 0.1 mol·L ⁻¹ NaHSO ₃ 溶液 pH 约为 5	HSO; 结合 H ⁺ 的能力比 SO ² ; 的强


13. 在实验室中以含镍废料(主要成分为 NiO,含少量 FeO、Fe₂O₃、CoO、BaO 和 SiO₂)为原 料制备 NixOv和 CoCO3的工艺流程如图。

下列说法不正确的是

- In pH" 时均需要加过量的试剂
 C. "沉钴" 过程发生的反应为 Co²⁺+ 2HCO₃ == CoCO₃↓ + CO₂↑ + H₂O
 D. "沉钴"时,若 c(Co²⁺)=0.02mol·L⁻¹,为了防止沉结时中 D. "沉钴"时,若 $c(Co^{2+})=0.02$ mol·L⁻¹,为了防止沉钴时生成 $Co(OH)_2$,常温下应控制溶液
- 14. 25℃时,向 15 mL 0.1 mol·L-1的 NaOH 溶液中逐滴滴入 0.1 mol·L-1的 CH₃COOH 溶液,加入 CH₃COOH 溶液的体积与混合溶液 pH 的关系如图所示(混合过程中忽略溶液体积变化)。 下列分析不正确的是

 - B. b点与c点所示溶液中水的电离程度: b>c
 - C. a 点溶液中: $c(Na^+)>c(OH^-)>c(CH_3COO^-)>c(H^+)$
 - D. b 点对应的溶液中 $c(CH_3COO^-)+c(CH_3COOH)=0.1 \text{ mol·L}^{-1}$

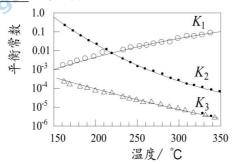
高三化学试卷第5页(共10页)

第二部分 非选择题(共58分)

15. (9分)

 CO_2 的资源化可以推动经济高质量发展和生态环境质量的持续改善。由 CO_2 合成甲醇是 CO_2 资源化利用的重要方法。

- I. 合成甲醇
 - (1) 由 CO2 催化加氢合成甲醇醇
 - ① 一定条件下,由 CO₂和 H₂制备甲醇的过程中有下列反应:

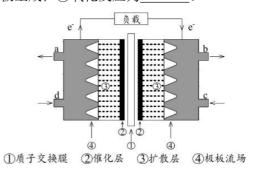

反应 1:
$$CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g) \Delta H_1$$

反应 2:
$$CO(g) + 2H_2(g)$$
 — $CH_3OH(g) \Delta H_2$

反应 3:
$$CO_2(g) + 3H_2(g)$$
 \longrightarrow $CH_3OH(g) + H_2O(g) \Delta H_3$

其对应的平衡常数分别为 K_1 、 K_2 、 K_3 ,它们随温度变化的曲线如图所示。

则
$$\Delta H_2$$
 ΔH_3 (填" >" "<"或"=")。

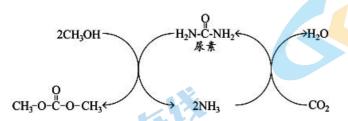

- ② 对于上述 CO₂ 加氢合成 CH₃OH 的反应体系,下列说法不正确的是 (填字母)
 - a. 增大初始投料比 $n(CO_2)/n(H_2)$, 有利于提高 CO_2 的转化率
 - b. 当气体的平均摩尔质量保持不变时,说明反应体系已达平衡
 - c. 体系达平衡后, 若压缩容器体积,则反应1平衡不移动,反应3平衡正向移动
 - d. 选用合适的催化剂可以提高反应 $3 + CO_2$ 的 平衡转化率
- (2) 电化学原理将 CO₂ 转化为甲醇

在光电催化条件下可以高效地将 CO_2 和 H_2O 转化为甲醇,从电极反应的角度分析:

①甲醇在 (填"阴"或"阳")极生成;②氧化反应为

II. 甲醇是重要的化工原料,也可用作甲醇 燃料电池。以稀硫酸为电解质溶液, 甲醇燃料电池的工作原理如图所示。

- (3) 该电池工作时, c 口通入的物质 是____。
- (4) 该电池负极的电极反应式是____。



高三化学试卷第6页(共10页)


16. (10分)

碳酸二甲酯 (CH,-O-C-O-CH,) 是一种环保性能优异,用途广泛的化工原料,其合成方 www.gkao2 法有多种。

I. 在催化剂作用下由 CO₂ 制备碳酸二甲酯的过程如下:

- (1) 尿素中 N 的第一电离能比 O 的高, 原因是:
 - ① O 失去的是已经配对的电子, 配对电子相互排斥, 因而电离能较低;
- (2) 下列关于氨气的叙述不正确的是 (填字母)。
 - a. NH₃的键角小于 CH₄的键角,是因为 NH₃的中心原子上孤电子对有较大斥力
 - b.NH3极易溶解在水中,只因氨分子与水分子间形成了氢键
 - c. NH; 的沸点比 PH; 的高, 是因为 N-H 的键能比 P-H 的大
- II. 在 CeO₂-ZrO₂ 固溶体的催化体系中也能将 CO₂转化为碳酸二甲酯。
 - (3) 氧化锆(化学式为 ZrO₂) 晶胞结构如图所示, Zr4+在晶胞中的配位数是_____, 若该晶胞的 密度为 ρ g·cm⁻³,用 N_A 表示阿伏伽德罗常数的 值,则该晶胞的体积是____cm3(列出计算式)。 (氧化锆的摩尔质量 $M=123g \cdot mol^{-1}$)
 - (4) Ce、Zr、Mn 和 Fe 都是过渡金属元素, Mn 与 Fe两元素的部分电离能如下表所示。

	电离能 (kJ·mol ⁻¹)									
元素	I_1	I_2	I_3							
Mn	717	1509	3248							
Fe	759	1561	2957							

- ① 铁元素位于元素周期表 族,属于 区。
- ② 比较两元素的 I_2 、 I_3 可知,气态 Mn^{2+} 再失去 1 个电子比气态 Fe^{2+} 再失去 1 个电子更 难,请从原子结构分析原因。

高三化学试卷第7页(共10页)

17. (14分)

我国科学家发现化合物 J 对消除由蜈蚣叮咬产生的严重临床症状有良好效果。J 的两条合成路线如下图所示。

己知:

ii -NH,易被氧化

回答下列问题:

- (1) A 中官能团有: 硝基和____。
- (2) D→E 的化学方程式是 。F 的结构简式是
- (3) 反应中 (6) 的作用_____
- (4) B有多种同分异构体,写出任意一种同时满足下列条件的 M的结构简式是____。
 - ① 含有-NO₂ 的芳香族化合物
 - ② 能发生水解反应且水解产物之一含有醛基
 - ③ 苯环上一氯代物有两种
- (5) G→H 的反应类型是
- (6) I→J 的反应还可能有副产物,请写出其中一种的结构简式。

高三化学试卷第8页(共10页)

18. (12分)

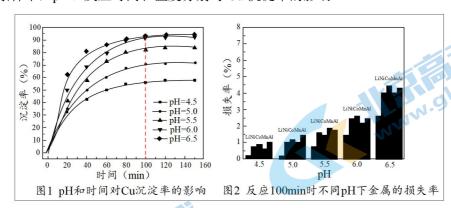
废弃的锂离子电池中含有大量 Co、Ni、Mn、Cu、Al 等金属元素,需回收处理。柠檬酸 因具有酸性和较好的络合性,可用于浸出金属离子并得到柠檬酸浸出液,下列是某小组研究 从柠檬酸浸出液中去除铜的方法。 www.9

方法一:调 pH 去除铜

资料 1: 金属离子沉淀的 pH

	Al(OH) ₃	Cu(OH) ₂	Ni(OH) ₂	Co(OH) ₂	Mn(OH) ₂
开始沉淀 pH	3.53	4.91	6.88	7.40	8.14
完全沉淀 pH	4.89	6.67	8.87	9.39	10.14

- (1) 由数据分析, 甲同学提出可以控制溶液 pH 至_____去除溶液中铜离子。
- (2) 设计实验,测得不同 pH 下铜的沉淀率如下表。


pН	5	8	10	12
铜的沉淀率	2.3	7.2	9.8	12

由数据分析 pH=12 时铜的沉淀率为 12%,远小于理论分析结果,分析可能原因 结论:不可以通过调 pH 去除铜。

方法二: 还原法去除铜

资料 2: 抗坏血酸(C6H8O6)具有较强的还原性,氧化后为脱氢抗坏血酸(C6H6O6); 受热易分解。

向柠檬酸浸出液中加入抗坏血酸能有效的将 Cu²⁺ 还原成金属 Cu。某实验小组研究了 相同条件下,pH、反应时间和温度分别对 Cu 沉淀率的影响。

- (3) 依据图 1 和图 2, 判断沉淀铜选择最佳 pH 为 理由是
- (4) 从图 3 可以看出,随着温度的升高, 相同时间内 Cu 的沉淀率先逐渐增加, 在80℃时达到最高点,后略有下降。 分析原因
- (5) 由上述实验可知: 抗坏血酸还原 铜离子可能存在的路径 (用离子方程式表示)

结论:可以通过还原法去除铜。

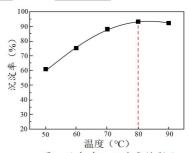


图3 温度对Cu沉淀率的影响

高三化学试卷第9页(共10页)

19. (13分)

某实验小组探究 Mn²⁺的检测方法。

查阅资料: Mn2+的稀溶液几乎无色,在酸性介质中,S2O2 能将 Mn2+氧化成 MnO4。

(1) 资料中检测 Mn²⁺方法的反应为_____(用离子方程式表示)。 甲同学设计实验如下。

序	号	实验操作	实验现象
,	T	向 1 mL 0.002 mol·L ⁻¹ MnSO ₄ 溶液中滴入 3 滴 3	5min 无明显现象
	1	mol·L ⁻¹ H ₂ SO ₄ 溶液并加入一粒米大的 K ₂ S ₂ O ₈ 固体	

(2) 实验 I 并未观察到预期现象,查阅资料,并进行以下实验。

序号	实验操作	实验现象
	向 1 mL 0.002 mol·L ⁻¹ MnSO ₄ 溶液中滴入 3 滴	溶液变棕黄色, 1min
II	3mol·L-1H ₂ SO ₄ 溶液并加入一粒米大的K ₂ S ₂ O ₈ 固	后出现紫红色
NW	体,加热至沸腾	
	向 1 mL 0.002 mol·L ⁻¹ MnSO ₄ 溶液中滴入 3 滴	溶液变棕黄色,5min
III	3 mol·L ⁻¹ H ₂ SO ₄ 溶液并加入一粒米大的 K ₂ S ₂ O ₈ 固	出现紫红色
	体,再滴入 2 滴 0.1 mol·L ⁻¹ AgNO ₃ 溶液	
	向 1 mL 0.05 mol·L ⁻¹ MnSO ₄ 溶液中滴入 3 滴	迅速生成棕黑色沉淀
IV	3 mol·L-1 H ₂ SO ₄ 溶液并加入一粒米大的 K ₂ S ₂ O ₈	
	固体,加热至沸腾	x2 13

- ① 对比实验 II 、III,推测实验 I 无明显现象的原因____
- ② 解释实验 II、III中溶液变棕黄色的原因___
- ③ 结合离子方程式解释实验IV中产生棕黑色沉淀的原因
- (3) 乙同学继续设计实验

序号	实验操作	实验现象
	向 1 mL 0.002 mol·L ⁻¹ MnSO ₄ 溶液中滴入 3 滴	1min 后出现紫红色
V	3 mol·L ⁻¹ H ₂ SO ₄ 溶液并加入一粒米大的 K ₂ S ₂ O ₈	
	固体 +,微热	

完成表格中空白处。

(4) 总结:探究 Mn²⁺的检测方法需要考虑的因素有____。

高三化学试卷第10页(共10页)

2022 北京门头沟高三一模化学

参考答案

第一部分共14题,每题3分,共42分。

题号	1	2	3	4	5	6	7	8	9	10	111/1	12	13	14
答案	A	D	С	D	A	С	В	A	D	В	С	В	В	D

第二部分共5题,共58分。

15. (9分)

- I. (1) ①< (1分)
 - ② a c d (2分)
 - (2) ①阴 (1分)
 - ② $2H_2O 4e^- = 2 \uparrow + 4H^+$ (2分)
- II. (3) O₂ (空气) (1分)
- (4) $CH_3OH + H_2O 6e^-$ <u>—</u> $I^+ + CO_2$ (2分)
- 16. (10分)
 - I. (1) N的电子排布是半充满的,比较稳定,电离能高(1分)
 - (2) bc (2分)
 - II. (3) 8 (0, 1分) $123\times4/N_{AP}$ (2分)
 - (4) ① VIII (1分)
 - d (1分)
 - ② Mn²⁺ 3d 能级是 3d⁵ 半充满状态,比较稳定;而 Fe²⁺ 3d 能级为不稳定的 3d⁶,

易失去一个电子转变为较稳定的 3d5 半充满状态,所以需要的能量相对要少(2分)

- 17. (14分)
 - (1) 氨基 (1分)

$$(2) \quad \text{H}_2\text{N} \longrightarrow \begin{array}{c} \text{NO}_2 & \text{O} \\ \text{NHCOCH}_2\text{CH}_3 \end{array} \qquad (2\%)$$

(3) 保护氨基, 防止在消化过程中被氧化 (1分)

- (5) 取代反应 (1分)
- (6) 合理即可 (2分)

- 18. (12分)
 - (1) 6.67 (1分)
 - (2) 柠檬酸是一种强络合剂,与铜离子结合能力大于与氢氧根离子的结合能力,致使铜离子无法与氢氧根离子结合形成氢氧化物沉淀 (2分)
 - (3) pH=6, (1分) pH=6 时铜离子沉淀率较高,而其他金属离子损失率相对较少(2分)
 - (4)温度升高,反应速率变快;当温度超过80℃时,抗坏血酸出现分解现象,导致还原性降低,还原铜的能力减弱 (2分)
 - (5) $Cu^{2+} + C_6H_8O_6 = C_6H_6O_6 + 2H^+ + Cu$ (2分) $Cu(OH)_2 + C_6H_8O_6 = C_6H_6O_6 + 2H_2O + Cu$ (2分)
- 19. (13分)
 - (1) $2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O = 2MnO_4^{-} + 10SO_4^{2-} + 16H^+$ (2%)
 - (2) ①反应速率较慢 (2分)
 - ② $S_2O_8^2$ -能将 Mn^2 +氧化成 MnO_4 ,但反应速率慢,生成的 MnO_4 浓度相对很小,相对过量的 Mn^2 +就会还原体系中生成的 MnO_2 。(2分)
 - ③ 3 Mn²⁺ + 2MnO₄+2H₂O == 5MnO₂ + 4H⁺ 溶液中 Mn²⁺浓度过大,体系中过量 Mn²⁺会还原生成的 MnO₄生成大量黑色 MnO₂沉淀。 (3 分)
 - (3) 2滴 0.1 mol·L⁻¹ AgNO₃溶液 (2分))
 - (4) 温度、催化剂、Mn²⁺浓度 (2分)

2022 北京高三各区一模试题下载

北京高考资讯公众号搜集整理了【2022 北京各区高三一模试题&答案】,想要获取试题资 料,关注公众号,点击菜单栏【高三一模】—【一模试题】,即可免费获取全部一模试题及 答案, 欢迎大家下载练习!

还有更多一模排名等信息, 考后持续更新!

※ 微信搜一搜

Q 北京高考资讯

