绝密★启用前

茂名市五校联盟 2022 届高三第一次联考试题

数学试卷

本试卷共 + 页,22 题。全卷满分 150 分。考试用时 120 分钟。 注意事项:

- 1. 答题前, 先将自己的姓名、考号等填写在试题卷和答题卡卡, 并将准考证号条形码粘贴在 答题卡上的指定位置。
- 2. 选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。写 在试题卷、草稿纸和答题卡上的非答题区域均无效。
- 3. 填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、 草稿纸和答题卡上的非答题区域均无效。
 - 4. 考试结束后, 请将本试题卷和答题卡一并上交。
- 一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合 题目要求的.
- 1. 已知复数 : 满足: $z(2+i) = \frac{1}{2} i$, 则 |z| = C

A.
$$\frac{1}{4}$$

徙

二

柒

益

訟

M

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{1}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

2. 已知集合 $A = \{x \mid x^2 - 6x - 16 < 0\}, B = \{y \mid y - 2 \le 0\}, 则 A \cap B = D$

 $A. \varnothing$

B. [2,8)

C.
$$(-\infty, 2]$$

D.
$$(-2,2]$$

3. 抛物线 $x = \frac{4}{3}y^2$ 的焦点坐标为**C**

A.
$$(\frac{1}{3}.0)$$

B.
$$\left(0, \frac{1}{3}\right)$$

A.
$$\left(\frac{1}{3}, 0\right)$$
 B. $\left(0, \frac{1}{3}\right)$ C. $\left(\frac{3}{16}, 0\right)$

D.
$$\left(0, \frac{2}{3}\right)$$

4. 在等差数列 $\{a_n\}$ 中 $\{a_n\}$ 中 $\{a_n\}$ 中 $\{a_n\}$ 0 $\{a_n\}$ 10,如其前 t 项的和为**B**

D. 25

5. 已知 A 是 $\triangle ABC$ 的内角,且 $\sin A + 3\cos A = -\sqrt{2}$,则 $\tan A$ 的值为

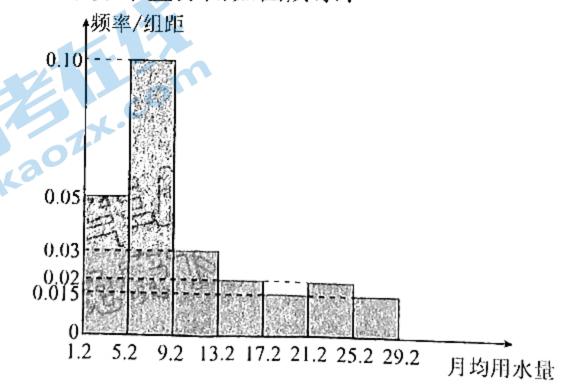
B.
$$-\frac{2}{3}$$
或 1

$$C. -1$$

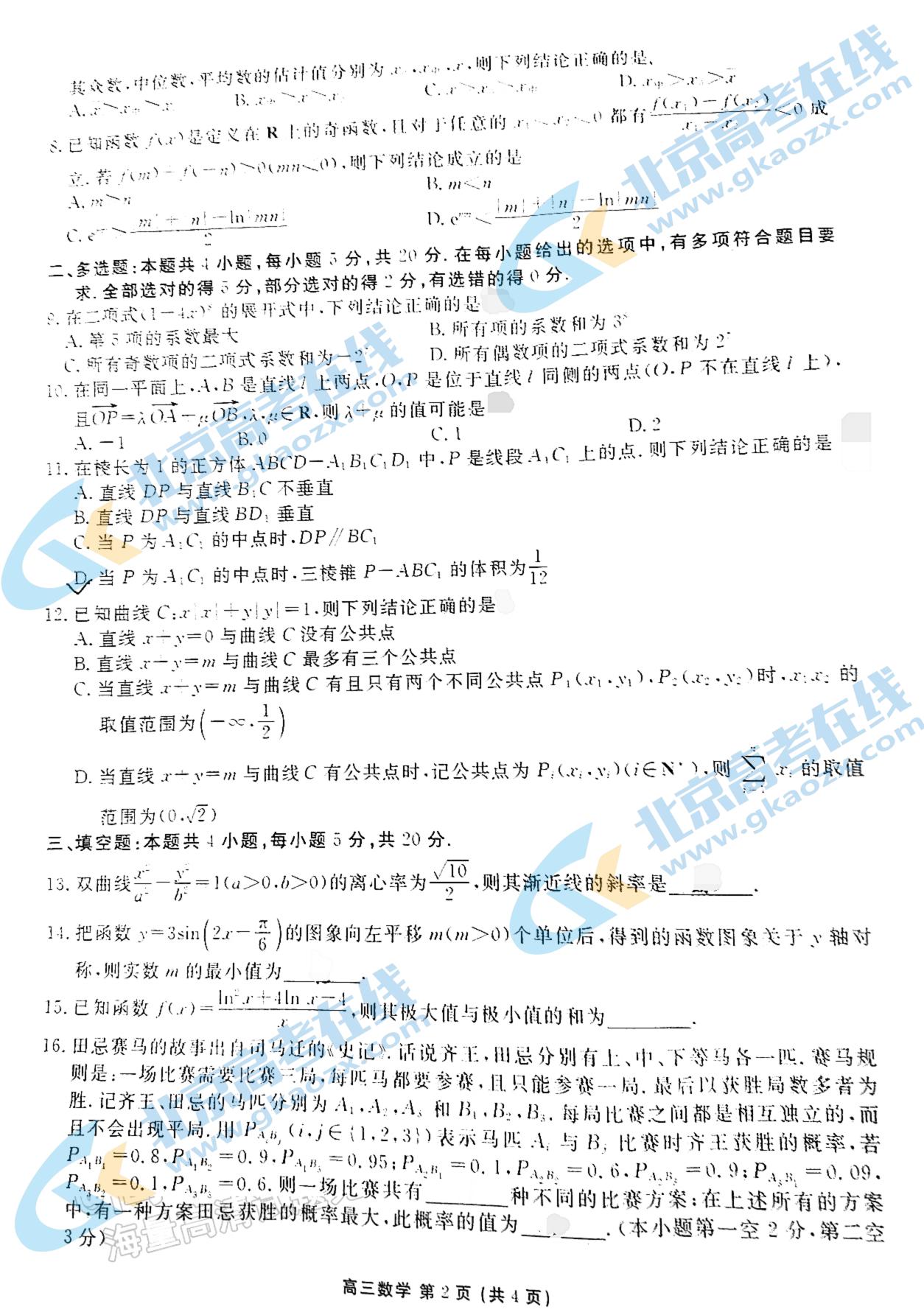
D.
$$-\frac{2}{3}$$

6. 已知圆 $C_*(x-1)^2 + (y-1)^2 = 4$,过直线 $l_*y = m(m>0)$ 上一点 P 作圆 C 的切线,切点依次 为 A,B,若直线 l 上有且只有一点 P 使得 $|\overrightarrow{PC}| = 2|\overrightarrow{AC}|$, O 为坐标原点,则 $\overrightarrow{OP} \cdot \overrightarrow{PC} = C$ B. 20 或 12 C. -20 或-12 D. 12

7. 某市居民月均用水量的频率分布直方图如图所示:



高三数学 第1页 (共4页)



关注北京高考在线官方微信·北京高考资讯(微信号·higkzx). 获取更多试题资料及排名分析信息

四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

接种新冠疫苗,可以有效降低感染新冠肺炎的儿率,某地区有 A,B,C 三种新冠疫苗可供居 17. (本小题满分 10 分) 民接种, 假设在某个时间段该地区集中接种第一针疫苗, 而且这三种疫苗的供应都很充足. 为了 节省时间和维持良好的接种秩序,接种点设置了号码机,号码机可以随机地产生A,B,C 三种号 码(产生每个号码的可能性都相等),前去接种第一针疫苗的居民先从号码机上取一张号码,然 后去接种与号码相对应的疫苗(例如:取到号码 A,就接种 A 种疫苗,以此类推). 若甲,乙,丙, 丁四个人各自独立的去接种第一针新冠疫苗.

- (1)求这四个人中恰有一个人接种 A 种疫苗的概率;
- (2)记甲,乙,丙,丁四个人中接种 A 种疫苗的人数为 X. 求随机变量 X 的分布列和数学 期望.

18. (本小题满分 12 分)

已知等比数列 $\{a_n\}$ 的前 n 项和 $S_n = a + 3c^n(a,c \in \mathbb{R},c \neq 0,c \neq 1)$.

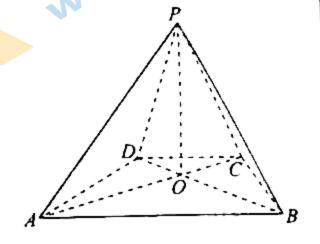
- (1)求 a 的值;
- (2)若 $c = \frac{5}{4}$ 且 $b_n = \frac{1}{n}a_n$,问 n 取何值时, b_n 取得最小值,并求此最小值.

19.(本小题满分 12 分)

在矩形 ABCD 所在平面内, E 为矩形 ABCD 外一点,且 AB=2AD, $ED=\sqrt{3}$, AE=3.

- (1) 若 ZADE=60°, 求 AD 的长度;
- (2)若 $\angle DEA = \theta(\theta)$ 为钝角). 当多边形 ABCDE 的面积最大时,求 tan θ 的值.

- 小题满分 12 分) 加图,在四棱锥 P-ABCD 中,底面 ABCD 是等腰梯形,AB//CD,AC 与 BD 交点为 O,且 BD.PA = PB.
 - (1)证明:PO上平面 ABCD:
- (2)若 $AC \perp BD$ 且 AO = 2OC = 6, PO = 3, 则在线段 PC 上是否存在一点 E, 使得之面角 p-AD-E的余弦值为 $\frac{8\sqrt{69}}{69}$,若存在,求出点 E的位置:若不存在,请说明理由.



经

鉄

装

21. (本小题满分12分) 已知椭圆 $C(\frac{y^2}{3} + \frac{2y^2}{3} = 1$,过点P(1,1)的直线 l_1, l_2 与椭圆C分别交于点P.M和P.N.记 直线 l_1 斜率为 $k(k\neq 0)$, 直线 l_2 的斜率为 k'.

- (1)若直线 $l_1 \cdot l_2$ 关于直线 y=x 对称,证明:kk'为定值;
- (2)已知点 A(2.0), 当 0 < k < 1 时,求 $\triangle APM$ 面积的最大值.

22.(本小题满分 12 分)

已知函数 $f(x) = \ln x + x^2 - ax$.

- (1) 当 a=3 时.求曲线 y=f(x) 在点 P(1,f(1)) 处的切线方程;
- (2)若 $x_1, x_2(x_1 < x_2)$ 是函数 f(x)的两个极值点,证明: $f(x_1) f(x_2) > \ln \frac{a^2}{8} + \frac{64 a^4}{16a^2}$.

茂名市五校联盟 2022 届高三第一次联考试题

数学参考答案

一、单选题

- 1. C 【解析】 $z = \frac{\frac{1}{2} i}{2 + i}$, $\therefore |z| = \frac{\left|\frac{1}{2} i\right|}{|2 + i|} = \frac{1}{2}$. 故选 C.
- 2. D 【解析】由 x²-6x-16<0⇒A=(-2,8),B=(-∞,2],∴A∩B=(-2,2]. 故选 D.
- 3. C 【解析】 $x = \frac{4}{3}y^2 \Rightarrow y^2 = \frac{3}{4}x \Rightarrow$ 焦点坐标为 $\left(\frac{3}{16}, 0\right)$. 故选 C.
- 4. B 【解析】 $d = \frac{a_{t+3} a_t}{3} = 1 = \frac{2}{t-2}$, $\therefore t = 4$, d = 1. $S_t = S_4 = 22$. 故选 B.
- 6. A 【解析】∵这样的点 P 是唯一的,∴x_P = 1,又∵m
 >0,则 P(1,5), OP PC = (1,5) (0,-4) = -20.
 故选 A.
- 7. A 【解析】由直方图可知,x_中>x₀,又因为直方图是 右边拖尾型的,所以 x>x_中,故选 A.
- 8. D 【解析】若函数 f(x)是连续的,则 m<n,若函数 f(x)是不连续的,m>n,也可能 m<n. 故 A,B都不正确. ∴ mn < 0. ∴ e^{mn} < 1, |m| + |n| ln|mn| =
 |m| ln|m| + |n| ln|n|

$$\therefore \frac{|m| + |n| - \ln|mn|}{2} = \frac{|m| - \ln|m| + |n| - \ln|n|}{2} \ge$$

$$\frac{1+1}{2} = 1.$$
 故选 D.

二、多选题

- 9. BD 【解析】因为第 9 项系数大于第 5 项系数,所以 A 错误. 令 α=1,可知 B 正确. 因为求的是二项式系数和,所以 C 错误,D 正确. 故选 BD.
- 10. AB 【解析】:当且仅当点 P 在直线 l 上时,则 λ 十 μ = 1. 而当 O, P 两点在 l 的异侧时,才会有 λ 十 μ > 1. 因为 O, P 在直线 l 同侧,所以 C, D 错误;当 OP // l 时, $\overrightarrow{OP} = k \overrightarrow{AB} = k(\overrightarrow{OB} \overrightarrow{OA})$,此时 λ 十 μ = 0,所以 B 正确。当 P 在 l 关于点 O 对称的直线 l' 上时, λ 十 μ = -1,所以 A 正确。故选 AB。
- 11. ABD 【解析】 ∵ B₁C // A₁D, ∵ A₁D 与 DP 成的最大角为 60°, 不可能垂直, ∴ A 正确, ∵ BD₁ ⊥ 平面 A₁DC₁, 故 B 正确, ∵ BC₁ // AD₁, 由图易知,选项 C 错误; ∵ VP-ABC₁ = VB-AFC₁ = 1/12. 故 D 正确. 故 选 ABD.
- 12. ACD 【解析】分类讨论可得 C: $\{x^2+y^2=1(x\geqslant 0,y\geqslant 0)\}$ $\{x^2-y^2=1(x\geqslant 0,y\leqslant 0)\}$,因为 x+y=0是 $x^2-y^2-x^2=1(x\leqslant 0,y\geqslant 0)$ $y^2=1$ 和 $y^2-x^2=1$ 的新近线,且 x+y=0与 $x^2+y^2=1(x\geqslant 0,y\geqslant 0)$ 没有公共点,所以 A 正确;因为 x+y=0是 $x^2-y^2=1$ 和 $y^2-x^2=1$ 的新近线,所以 B 计误;由图可知若 x+y=m与曲线 C 看两个公共

三、填空题

13.
$$\frac{\sqrt{6}}{2}$$
或一 $\frac{\sqrt{6}}{2}$ 【解析】: $e = \frac{\sqrt{10}}{2}$,: $4c^2 = 10a^2$, $4a^2 + 4b^2 = 10a^2$, $k = \pm \frac{b}{a} = \pm \frac{\sqrt{6}}{2}$.

- 14. $\frac{\pi}{3}$ 【解析】设向左平移 m 个单位,则 $y=3\sin\left(2x+2m-\frac{\pi}{6}\right)$,于是 $2m-\frac{\pi}{6}=\frac{\pi}{2}+k\pi$, $k\in \mathbb{Z}$. $m=\frac{\pi}{12}+\frac{\pi}{4}+\frac{k\pi}{2}$, $k\in \mathbb{Z}$,x=0 时,x=0 时,x=0 时,x=0 有最小值 $\frac{\pi}{3}$,所以答案为 $\frac{\pi}{3}$.
- 15. $\frac{8}{e^2} 4e^4$ [解析] $f(x) = \frac{\ln^2 x + 4\ln x 4}{x}$, $f'(x) = \frac{(\ln x + 4)(\ln x 2)}{x^2}(x > 0)$, $f'(x) > 0 \Rightarrow e^{-4} < x < E(X) = np = \frac{4}{3}$.

 e^{2} , f'(x)<0⇒0<x< e^{-4} 或x> e^{2} , f(x)在(0, e^{-4})上单调递减, (e^{-4}, e^{2}) 上单调递增, $(e^{2}, +\infty)$ 上单调递减, $f(x)_{\frac{1}{10}}$ $f(e^{-4}) = -4e^{4}$.

四、解答题

17. 解: (1)记四个人中恰有一个人接种 A 疫苗的事件 为 M,

则
$$P(M) = C_4^1 \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^3 = \frac{32}{81}$$
,

所以四个人中恰有一个人接种 A 疫苗的概率为 $\frac{32}{81}$.

(2)由颞章可知,X的取值依次为0,1,2,3,4.(5分)

$$\mathbb{E} X \sim B\left(4, \frac{1}{3}\right), P(X = k) = C_4^k \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{4-k} (k)$$

$$= 0, 1, 2, 3, 4). \tag{7 }$$

故随机变量 X 的分布列为

X	0	1	2	3	4
P	$\frac{16}{81}$	$\frac{32}{81}$	$\frac{8}{27}$	<u>8</u> 81	<u>1</u> 81

(9分)

$$E(X) = np = \frac{4}{3}. (10 \text{ }\%)$$

18. **解**: (1) 当 $n \ge 2$ 时, $a_n = S_n - S_{n-1} = a + 3\epsilon^n - a - a$

$$3e^{n-1} = 3(e-1)e^{n-1}$$
,(1) (2.5)

$$a_{n+1} = 3(c-1)c^n$$
. (*)

则
$$a_{n+1} = ca_n$$
, (4 分)

当 n=1 时, $a_1=S_1=a+3c$,

因为 $\{a_n\}$ 为等比数列,

所以 $a_2 = ca_1$.

由(*)式可知, $a_2=3(c-1)c_1$

$$\therefore 3c(c-1) = c(a+3c), 解得 a = -3. \tag{6分}$$

(2)
$$c = \frac{5}{4} \text{ B}_{1}^{+}, a_{n} = \frac{3}{4} \left(\frac{5}{4}\right)^{n-1},$$

$$\therefore b_{n} = \frac{1}{n} a_{n}.$$

$$: b_n = \frac{1}{n} a_n .$$

$$\therefore b_n = \frac{3}{4n} \left(\frac{5}{4} \right)^{n-1}, b_{n+1} = \frac{3}{4(n+1)} \left(\frac{5}{4} \right)^n. \tag{8 } \text{?}$$

$$b_{n+1} \geqslant b_n$$
, $\mathfrak{P}\left(\frac{3}{4(n+1)}\left(\frac{5}{4}\right)^n \geqslant \frac{3}{4n}\left(\frac{5}{4}\right)^{n+1} \Rightarrow n \geqslant 4$.

$$b_{n+1} < b_n \Rightarrow n < 4. \tag{10 }$$

于是 $b_1 > b_2 > b_3 > b_4 = b_5 < b_6 < b_7 < b_3 < \cdots$,

所以 n=4 或 5 时, b_n 取得最小值,最小值为 $b_n=b_n$

$$=\frac{375}{1.024}.\tag{12 3}$$

19. 解: (1) 在 三 角 形 ADE 中, 根 据 正 弦 定 理 得,

$$\frac{AE}{\sin\angle ADE} = \frac{DE}{\sin\angle DAE} \Rightarrow \frac{3}{\sin 60^{\circ}} = \frac{\sqrt{3}}{\sin\angle DAE}$$

$$\Rightarrow \sin \angle DAE = \frac{1}{2}.$$
 (2 $\%$)

- AE > DE,
- $\therefore \angle EAD < 60^{\circ}$,
- $\therefore \angle EAD = 30^{\circ}$,

则*_AED=90*°

$$AD = 2\sqrt{3}. \tag{4 }$$

(2)因为 *θ* 是钝角,

所以点 E 在以 AD 为直径的圆内且在矩形

ABCD 外,

所以多边形 ABCDE 是凸五边形。

则
$$S_{ABCDE} = S_{\triangle ADE} + S_{短形AECD}$$
, $S_{\triangle ADE} = \frac{3\sqrt{3}}{2} \sin \, \, heta$,

$$S_{ABCD} = AD \cdot AB = 2AD^2$$
,

在 $\triangle ADE$ 中,由余弦定理, $AD^2 = 9 + 3 - 6\sqrt{3}\cos\theta$,

$$S_{ABCD} = 2AD^2 = 24 - 12\sqrt{3}\cos\theta,$$

所以
$$S_{\text{ABCDE}} = \frac{3\sqrt{3}}{2} \sin \theta - 12\sqrt{3} \cos \theta + 24$$

$$=\frac{3\sqrt{3}}{2}(\sin\theta - 8\cos\theta) + 24 \tag{8 \%}$$

$$=\frac{3\sqrt{195}}{2}\left(\frac{1}{\sqrt{65}}\sin\theta - \frac{8}{\sqrt{65}}\cos\theta\right) + 24$$

$$= \frac{3\sqrt{195}}{2}\sin(\theta - \varphi) + 24, \begin{cases} \sin \varphi = \frac{8}{\sqrt{65}}, \\ \cos \varphi = \frac{1}{\sqrt{65}}, \end{cases}$$
(10 $\frac{2}{3}$)

当且仅当 $\theta - \varphi = \frac{\pi}{2}$,即 $\theta = \frac{\pi}{2} + \varphi$ 时, S_{ABCDE} 取得最

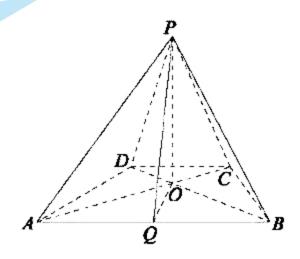
大值,

此时
$$\sin \theta = \cos \varphi = \frac{1}{\sqrt{65}}$$
, $\cos \theta = -\sin \varphi = -\frac{8}{\sqrt{65}}$.

所以
$$\tan \theta = -\frac{1}{8}$$
. (12分)

20. \mathbf{m} : (1)因为 \mathbf{ABCD} 为等腰梯形,所以 $\mathbf{AO} = \mathbf{BO}$,

取 AB 的中点 Q, 连接 OQ, PQ,



则 $AB \perp OQ$,又: PA = PB, $:: AB \perp PQ$.

::AB上平面 POQ,

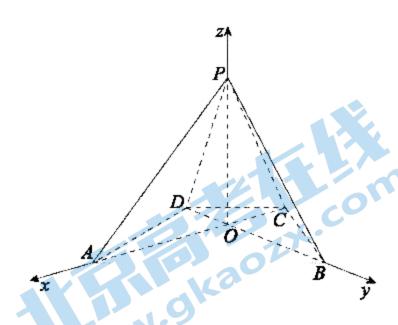
 $\therefore AB \perp PO$,

• 3 •

又 $:PO \perp BD$,

 $AB \cap BD = B$,

(2)如图,建立空间直角坐标系 Oxyz,



 $M A(6.0.0) \cdot D(0.-3.0) \cdot C(-3.0.0) \cdot P(0.0.3).$

(5分)

设平面 PAD 的法向量为 $m = (x_1, y_1, z_1), \overrightarrow{AD} =$ $(-6, -3, 0), \overrightarrow{AP} = (-6, 0, 3),$

所以
$$\begin{cases} 2x_1 + y_1 = 0\\ -2x_1 + z_1 = 0 \end{cases}$$

 $\Leftrightarrow x_1 = 1, 4, y_1 = -2, z_1 = 2,$

$$∴ m = (1, -2, 2). \tag{8 分}$$

设点 E(x,y,z), $\overrightarrow{CE} = \lambda$ $\overrightarrow{EP} \Rightarrow (x+3,y,z) = \lambda(-x,z)$ -y,3-z).

解得
$$\begin{cases} x = -\frac{3}{1+\lambda} \\ y = 0 \end{cases}$$
 $\Rightarrow \overrightarrow{AE} = \left(-\frac{6\lambda+9}{\lambda+1}, 0, \frac{3\lambda}{\lambda+1}\right),$ $z = \frac{3\lambda}{\lambda+1}$

设平面 ADE 的法向量为n

若这样的点 E 存在,

则
$$\frac{8}{\sqrt{69}} = \left| \frac{9\lambda + 6}{3\sqrt{\lambda^2 + 4\lambda^2 + (2\lambda + 3)^2}} \right| \rightarrow 3\lambda^2 + 4\lambda - 20$$

$$=0\Rightarrow \lambda_1=2.\lambda_2=-\frac{10}{3}(含生).$$

所以存在符合题意的点 E.E 为线段 PC 上靠近点 P的三等分点... (12分)

21. \mathbf{M} : (1)设 l_1 与 y 轴的交点为(0,m),

因为 $k \neq 0$,所以 $m \neq 1$,

因为 $l_1 \cdot l_2$ 关于直线 y = x 对称,

所以 l_0 与 x 轴的交点为(m,0),

于是
$$k = \frac{m-1}{-1}$$
, $k' = \frac{-1}{m-1} \Rightarrow kk' = \frac{m-1}{-1} \times \frac{-1}{m-1} = 1$,

所以 kk'为定值 1.

(4分)

(2)设直线 l_1 的方程为:y=kx+1-k(0 < k < 1),

联立方程组
$$\begin{cases} y=kx+1-k \\ x^2+2y^2-3=0 \end{cases}$$
,

得 $(2k^2+1)x^2+4k(1-k)x+2k^2-4k-1=0$.

$$\Delta = 16k^2 (1-k)^2 - 4(2k^2+1)(2k^2-4k-1) = 4(2k+1)^2 > 0.$$
(6 3)

$$|PM| = \sqrt{1+k^2} \frac{\sqrt{4(2k+1)^2}}{2k^2+1} = \sqrt{1+k^2} \frac{2(2k+1)}{2k^2+1}$$

点 A(2,0)到直线 l_1 的距离 $d=\frac{k+1}{2}$

$$S_{\triangle APM} = \frac{1}{2} |PM| d = \frac{(2k+1)(k+1)}{2k^2+1} = \frac{2k^2+3k+1}{2k^2+1}$$

$$=1+\frac{3k}{2k^2+1}$$

$$=1+\frac{3}{2k+\frac{1}{k}} \leq 1+\frac{3}{2\sqrt{2}},$$
 (10 %)

$$(10 \ eta)$$
 所以 $k = \frac{\sqrt{2}}{2}$ 时, $\triangle APM$ 面积的最大值为 $\frac{4+3\sqrt{2}}{4}$.

(12分)

22. **M**: (1)a=3 **b**, $f(x)=\ln x+x^2-3x$,

$$f(1) = -2$$
,

所以切点坐标为 P(1,-2).

$$f'(x) = \frac{1}{x} + 2x - 3,$$
 (2 $\%$)

f'(1) = 0,于是所求切线的斜率 k = 0.

又因为所求切线过点 P(1,-2),

所以曲线 y=f(x)在点 P(1,f(1))处的切线方程为 y=-2. (4 分)

(2)
$$f'(x) = \frac{2x^2 - ax + 1}{x}$$
,

 x_1, x_2 是函数 f(x)的两个极值点,

- x_1, x_2 是函数 f'(x) 两个大于 0 的零点,
- x_1, x_2 是方程 $2x^2 ax + 1 = 0$ 的两个不同正解,

则
$$\begin{cases} x_1 + x_2 = \frac{a}{2} & \text{①} \\ x_1 x_2 = \frac{1}{2} & \text{②} \end{cases}$$
 , 且 $\begin{cases} \frac{a}{2} > 0 \\ \Delta = a^2 - 8 > 0 \end{cases}$ $\Rightarrow a > 2\sqrt{2}$.

(6分)

由①,②可得 $x_1 - x_2 = x_1 - \frac{1}{2x_1}$, $x_1 + x_2 - a = x_1 + x_2 - a = x_1$

$$x_2-2(x_1+x_2)=-(x_1+x_2)=-(x_1+\frac{1}{2x_1}),$$

所以
$$f(x_1) - f(x_2) = \ln x_1 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - \ln x_2 - x_2^2 + x_1^2 - ax_1 - x_1^2 - ax_1^2 - a$$

$$ax_2 = \ln \frac{x_1}{x_2} + (x_1 - x_2)(x_1 + x_2 - a) = \ln (2x_1^2) -$$

$$\left(x_1 - \frac{1}{2x_1}\right)\left(x_1 + \frac{1}{2x_1}\right) = \ln(2x_1^2) - \left(x_1^2 - \frac{1}{4x_1^2}\right)$$

$$= \ln(2x_1^2) + \frac{1 - 4x_1^4}{4x_1^2}.$$

又 :
$$x_1 < x_2$$
 且 $x_1 + x_2 = \frac{a}{2}$,

$$\therefore 0 < x_1 < \frac{a}{4}. \tag{8分}$$

$$\Leftrightarrow 2x_1^2 = t\left(0 < t < \frac{a^2}{8}\right),$$

则
$$f(x_1) - f(x_2) = \ln t + \frac{1 - t^2}{2t}$$
.

构造函数 $h(t) = \ln t + \frac{1-t^2}{2t} \left(0 < t < \frac{a^2}{8} \right)$,

$$h'(t) = \frac{1}{t} - \frac{1+t^2}{2t^2} = \frac{-(t-1)^2}{2t^2} \le 0$$

$$\therefore h(t)$$
是 $\left(0, \frac{a^2}{8}\right)$ 上的减函数. (10 分)

$$\therefore h(t) > h\left(\frac{a^2}{8}\right)$$
,且 $t \to \frac{a^2}{8}$ 时, $h(t) \to h\left(\frac{a^2}{8}\right)$

$$h\left(\frac{a^2}{8}\right) = \ln\frac{a^2}{8} + \frac{64 - a^4}{16a^2}$$

$$\therefore f(x_1) - f(x_2) > \ln \frac{a^2}{8} + \frac{64 - a^4}{16a^2}.$$
 (12 37)

