2024 北京西城高三(上)期末

数学

2024.1

本试卷共 6 页, 150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)

一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

(1) 已知集合 $A = \{x \mid -1 < x < 3\}$, $B = \{x \mid x^2 \ge 4\}$, 则 $A \cup B = \{x \mid x^2 \ge 4\}$,

 $(A) (-1,+\infty)$

(B) (-1,2)

(C) $(-\infty, -2] \cup (-1, +\infty)$

(D) $(-\infty, -2] \cup (-1, 3)$

(2) 在复平面内,复数 $\frac{i-2}{i}$ 对应的点位于

(A) 第一象限

(B) 第二象限

(C) 第三象限

(D) 第四象限

(3) 设 $a,b \in \mathbf{R}$,且a > b,则

 $(A) \frac{1}{a} < \frac{1}{b}$

(B) $\tan a > \tan b$

(C) 3-a < 2-b

(D) a | a | > b | b |

(4) 已知双曲线 C 的一个焦点是 $F_1(0,2)$, 渐近线为 $y = \pm \sqrt{3}x$, 则 C 的方程是

(A) $x^2 - \frac{y^2}{3} = 1$

(B) $\frac{x^2}{3} - y^2 = 1$

(C) $y^2 - \frac{x^2}{3} = 1$

(D) $\frac{y^2}{3} - x^2 = 1$

(5) 已知点O(0,0),点P满足|PO|=1. 若点A(t,4),其中 $t \in \mathbb{R}$,则|PA|的最小值为

(A) 5

(B) 4

(C) 3

(D) 2

(6) 在 $\triangle ABC$ 中, $\angle B=60^{\circ}$, $b=\sqrt{7}$, a-c=2,则 $\triangle ABC$ 的面积为

 $(A) \ \frac{3\sqrt{3}}{2}$

(B) $\frac{3\sqrt{3}}{4}$

(C) $\frac{3}{2}$

(D) $\frac{3}{4}$

(7) 已知函数 $f(x) = \ln \frac{1+x}{1-x}$,则

(A) f(x) 在(-1,1)上是减函数,且曲线 y = f(x) 存在对称轴

- (B) f(x) 在(-1,1)上是减函数,且曲线 y = f(x) 存在对称中心
- (C) f(x) 在(-1,1)上是增函数,且曲线 y = f(x) 存在对称轴
- (D) f(x) 在(-1,1)上是增函数,且曲线 y = f(x) 存在对称中心
- (8) 设a,b是非零向量,则"|a|<|b|"是" $|a\cdot b|<|b|^2$ "的
 - (A) 充分不必要条件

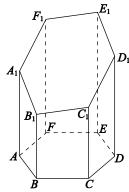
(C) 充要条件

- (9) 设 $\{a_n\}$ 是首项为正数,公比为q的无穷等比数列,其前n项和为 S_n . 若存在无穷 多个正整数 k , 使 $S_{\iota} \leq 0$, 则 q 的取值范围是
 - (A) $(-\infty, 0)$

(B) $(-\infty, -1]$

(C) [-1,0)

- (D) (0,1)
- (10) 如图,水平地面上有一正六边形地块 ABCDEF,设计师规划在正 六边形的顶点处矗立六根与地面垂直的柱子, 用以固定一块平板式太阳能 电池板 $A_iB_iC_iD_iE_iF_i$. 若其中三根柱子 AA_i , BB_i , CC_i 的高度依次为 12m, 9m, 10m,则另外三根柱子的高度之和为



(A) 47 m

(B) 48m

(C) 49 m

(D) 50m

第二部分(非选择题 共110分)

- 二、填空题共5小题,每小题5分,共25分。
- (11) 在 $(x-\sqrt{2})^4$ 的展开式中, x^2 的系数为 . (用数字作答)
- (12) 设 $\omega > 0$, 函数 $f(x) = \sin \omega x$. 若曲线 y = f(x) 关于直线 $x = \frac{\pi}{6}$ 对称,则 ω 的一个取值 为 .
- (14) 已知抛物线 $C: y^2 = 8x$.
 - ① 则 C 的准线方程为
 - ② 设C的顶点为O,焦点为F. 点P在C上,点Q与点P关于y 轴对称. 若QF 平分 $\angle PFO$,则 $\triangle P$ 的横坐标为
- (15) 设 $a \in \mathbf{R}$, 函数 $f(x) = \begin{cases} -x^3, & x > a, \\ -x^2 + a^2, & x \le a. \end{cases}$ 给出下列四个结论:

- ① f(x) 在区间 $(0,+\infty)$ 上单调递减;
- ② 当 $a \ge 0$ 时, f(x)存在最大值;
- ③ 当a < 0时,直线y = ax与曲线y = f(x)恰有3个交点;
- $2/(\sqrt{2} \le a)$,使 $|MN| \le \frac{1}{100}$. 三、解答题共 6 小题,共 85 分。解答应写出文字说明,演算步骤或证明过程。 (16)(本小题 13 分)

已知函数 $f(x) = 2a \sin x \cos x - 2 \cos^2 x$ 的一个零点为 $\frac{\pi}{6}$

- (I) 求 a 的值及 f(x) 的最小正周期;
- (II) 若 $m \le f(x) \le M$ 对 $x \in [0, \frac{\pi}{2}]$ 恒成立,求m 的最大值和M 的最小值.

(17) (本小题 13分)

生活中人们喜爱用跑步软件记录分享自己的运动轨迹。为了解某地中学生和大学生对跑步软件的使用 情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:

	跑步软件一	跑步软件二	跑步软件三	跑步软件四
中学生	80	60	40	20
大学生	30	20	20	10

假设大学生和中学生对跑步软件的喜爱互不影响.

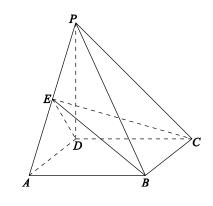
- (I)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最 喜爱使用跑步软件一的概率;
- (II) 采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人。记X为这 3人中最喜爱使用跑步软件二的人数, 求X的分布列和数学期望;
- (III) 记样本中的中学生最喜爱使用这四款跑步软件的频率依次为 x_1, x_2, x_3, x_4 , 其方差为 s_1^2 ;

样本中的大学生最喜爱使用这四款跑步软件的频率依次为 y_1, y_2, y_3, y_4 , 其方差为 s_2^2 ; $x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4$ 的方差为 s_3^2 . 写出 s_1^2, s_2^2, s_3^2 的大小关系.(结论不要求证明)

(18)(本小题 14分)

如图,在四棱锥 P-ABCD 中,底面 ABCD 是菱形, PD 上平面 ABCD, 平面 PAB 上平面 PAD, E 为 PA 中点, PD = AD = 2.

- (I) 求证: *AB* 上平面 *PAD*;
- (II) 求直线 DE 与平面 PBC 所成角的大小;
- (III) 求四面体 PEBC 的体积.



(19) (本小题 15分)

已知椭圆
$$E$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a > b > 0)$ 的离心率为 $\frac{\sqrt{3}}{2}$,且经过点 $C(2,1)$.

- (I) 求 E 的方程;
- (II)过点 N(0,1) 的直线交 E 于点 A,B (点 A,B 与点 C 不重合)。设 AB 的中点为M,连接 CM 并延长交 E 于点 D . 若 M 恰为 CD 的中点,求直线 AB 的方程。
- (20) (本小题 15分)

已知函数
$$f(x) = \frac{e^{ax}}{x}$$
, 其中 $a > 0$.

- (I) 当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
- (II) 求 f(x) 的单调区间;
- (III) 当 $x_1 < x_2$ 且 $x_1 \cdot x_2 > 0$ 时,判断 $f(x_1) f(x_2)$ 与 $\frac{1}{x_1} \frac{1}{x_2}$ 的大小,并说明理由.
- (21)(本小题 15分)

给定正整数 $N \ge 3$,已知项数为 m 且无重复项的数对序列 $A:(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$ 满足如下三个性质:

- ① $x_i, y_i \in \{1, 2, \dots, N\}$, $\exists x_i \neq y_i \ (i = 1, 2, \dots, m)$;
- ② $x_{i+1} = y_i$ $(i = 1, 2, \dots, m-1)$;
- ③ (p,q)与(q,p)不同时在数对序列A中.
- (I) 当N=3, m=3时, 写出所有满足 $x_1=1$ 的数对序列A;
- (II) 当N = 6时,证明: $m \le 13$;
- (III) 当 N 为奇数时,记m 的最大值为T(N),求T(N).

(考生务必将答案答在答题卡上,在试卷上作答无效)

北京市西城区 2023—2024 学年度第一学期期末试卷

高三数学答案及评分参考

- 一、选择题(共10小题,每小题4分,共40分)
 - (1)C

- (2) A (3) D (4) D

- (6) B (7) D (8) A

- (9) B
- (10) A

- 二、填空题(共5小题,每小题5分,共25分)
 - (11) 12

(12) 3 (答案不唯一)

- (13) $(4,+\infty)$
- $y_{N} g_{20} = -2$

- (15) ①24
- 三、解答题 (共6小题,共85分)
 - (16) (共13分)
- 解: (I) 由题设 $2a\sin\frac{\pi}{6}\cos\frac{\pi}{6} 2\cos^2\frac{\pi}{6} = 0$,

解得 $a=\sqrt{3}$.

First $f(x) = 2\sqrt{3}\sin x \cos x - 2\cos^2 x$ $=\sqrt{3}\sin 2x - \cos 2x - 1$

$$= 2\sin(2x - \frac{\pi}{6}) - 1$$
.

所以 f(x) 的最小正周期为 π.

(II) 因为 $0 \le x \le \frac{\pi}{2}$,

所以
$$-\frac{\pi}{6} \le 2x - \frac{\pi}{6} \le \frac{5\pi}{6}$$
.

所以 $-\frac{1}{2} \le \sin(2x - \frac{\pi}{6}) \le 1$, 即 $-2 \le 2\sin(2x - \frac{\pi}{6}) - 1 \le 1$.

-----9分

当
$$2x-\frac{\pi}{6}=-\frac{\pi}{6}$$
,即 $x=0$ 时, $f(x)$ 収得最小值 -2 .

由题设 m ≤ -2, 且 M ≥ 1.

所以m的最大值是-2: M的最小值是1.

(17) (共13分)

■: (1)记"这2人都最喜爱使用跑步软件一"为事件A,

则
$$P(A) = \frac{80}{200} \times \frac{30}{80} = \frac{3}{20}$$
.

(II) 因为抽取的8人中最喜爱跑步软件二的人数为 $8 \times \frac{20}{80} = 2$,

所以X的所有可能取值为0.1.2.

$$P(X=0) = \frac{C_6^3}{C_8^3} = \frac{5}{14}$$
,

$$P(X=1) = \frac{C_2^1 C_6^2}{C_8^3} = \frac{15}{28}$$

$$P(X=0) = \frac{C_6^3}{C_8^3} = \frac{5}{14}$$
, $P(X=1) = \frac{C_2^1 C_6^2}{C_8^3} = \frac{15}{28}$, $P(X=2) = \frac{C_2^2 C_6^1}{C_8^3} = \frac{3}{28}$.

所以 X 的分布列为

X	0	1	2
P	5 14	15 28	3 28

故 X 的数学期望
$$EX = 0 \times \frac{5}{14} + 1 \times \frac{15}{28} + 2 \times \frac{3}{28} = \frac{3}{4}$$
.

(III)
$$s_1^2 < s_1^2 < s_1^2$$
.

(18) (共14分)

解: (1)因为PD=AD, E为PA中点,

所以 DE L PA.

.....1分

又因为平面 PAB 上平面 PAD,

平面 PAB∩平面 PAD = PA,

且 DE C 平面 PAB.

所以 DE 1 平面 PAB2

所以DE ⊥ AB.3 分

因为PD」平面 ABCD,

所以PD LAB.

所以AB 上平面PAD.

.....4 分

(II) 因为AB工平面PAD, ABIICD, 所以CD工平面PAD.

又PD1平面 ABCD, 所以 DA, DC, DP 两两相互垂直.

-----5 分

如图建立空间直角坐标系 D-xyz,

.....6 4

 \mathbb{N} D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), P(0,0,2), E(1,0,1).

所以 $\overrightarrow{CB} = (2,0,0)$, $\overrightarrow{CP} = (0,-2,2)$, $\overrightarrow{DE} = (1,0,1)$.

设平面 PBC 的法向量为 m = (x, y, z) ,则 $\begin{cases} m \cdot \overrightarrow{CB} = 0, \\ m \cdot \overrightarrow{CP} = 0. \end{cases}$ 即 $\begin{cases} 2x = 0, \\ -2y + 2z = 0. \end{cases}$

令y=1,则z=1.于是m=(0,1,1).

设直线 DE 与平面 PBC 所成角为 α ,则

 $\sin \alpha = |\cos\langle m, \overrightarrow{DE}\rangle| = \frac{|m \cdot \overrightarrow{DE}|}{|m||\overrightarrow{DE}|} = \frac{1}{2}.$

.9

.....11分

所以直线 DE 与平面 PBC 所成角的大小为30°.

(III) 因为 \overrightarrow{EP} = (-1,0,1),

所以点 E 到平面 PBC 的距离为 $d = \frac{|\boldsymbol{m} \cdot \overrightarrow{EP}|}{|\boldsymbol{m}|} = \frac{\sqrt{2}}{2}$13 分

因为CB」CP,

关注北京高考在线官方微信: **京考一点通** (微信号:bjgkzx), 获取更多试题资料及排名分析信息。 北京市西城区 2023—2024 学年度第一学期期末试卷 高三数学答案及评分参考 第 3 页 (共 6 页)

解: (I) 由题设,
$$\begin{cases} \frac{c}{a} = \frac{\sqrt{3}}{2}, \\ a^2 + b^2 = c^2, \\ \frac{4}{a^2} + \frac{1}{b^2} = 1, \end{cases}$$

解得
$$a^2 = 8$$
, $b^2 = 2$.

所以椭圆 E 的方程为 $\frac{x^2}{8} + \frac{y^2}{2} = 1$5 分

(II) 若直线 AB 与 y 轴重合,则点 M 与原点重合,符合题意,

此时直线 AB 的方程为 x=0.

-----6分

若直线 AB 与 y 轴不重合,设其方程为 y = kx + 1.

设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, 则 $x_1 + x_2 = \frac{-8k}{4k^2 + 1}$.

-----9分

所以
$$x_M = \frac{x_1 + x_2}{2} = \frac{-4k}{4k^2 + 1}$$
, $y_M = kx_M + 1 = \frac{1}{4k^2 + 1}$.

.....10分

因为M是CD的中点,

所以
$$x_D = 2x_M - x_C = \frac{-8k}{4k^2 + 1} - 2$$
, $y_D = 2y_M - y_C = \frac{2}{4k^2 + 1} - 1$11 分

因为
$$x_D^2 + 4y_D^2 = 8$$
,12 分

所以
$$(\frac{-8k}{4k^2+1}-2)^2+4(\frac{2}{4k^2+1}-1)^2-8=0$$
.

整理得
$$4k^3 + k = 0$$
.13 分

$$解得k=0$$
. ········14 分

但此时直线 AB 经过点 C,不符合题意,舍去.

关**综**上京高者在线官方微信程**为x=0** (微信号:bjgkzx), 获取更多试题资料及排名分析信息5 分

解: (1) 当
$$a=1$$
 时, $f(x)=\frac{e^x}{x}$, 所以 $f'(x)=\frac{(x-1)e^x}{x^2}$.

所以 f(1) = e, f'(1) = 0.

(II) f(x) 的定义域为($-\infty$, 0) U(0, $+\infty$),且 $f'(x) = \frac{(ax-1)e^{ax}}{x^2}$ 6 分 令 f'(x) = 0 . a = 1

f'(x)与 f(x)的情况如下:

x	(-∞,0)	$(0,\frac{1}{a})$	$\frac{1}{a}$	$(\frac{1}{a}, +\infty)$
f'(x)	-	-	0	+
f(x)	\	`		1

所以 f(x) 的单调递增区间为 $(\frac{1}{a}, +\infty)$; 单调递减区间为 $(-\infty, 0)$ 和 $(0, \frac{1}{a})$.

(III) 当 $x_1 < x_2$ 且 $x_1 \cdot x_2 > 0$ 时, $f(x_1) - f(x_2) < \frac{1}{x} - \frac{1}{x}$,证明如下:

$$\Rightarrow g(x) = f(x) - \frac{1}{x}$$
, $\iint g'(x) = \frac{(ax-1)e^{ax}+1}{x^2}$.

设
$$h(x) = (ax - 1)e^{ax} + 1$$
, 则 $h'(x) = a^2xe^{ax}$.

所以当 $x \in (-\infty, 0)$ 时,h'(x) < 0: 当 $x \in (0, +\infty)$ 时,h'(x) > 0.

所以h(x)在 $(-\infty,0)$ 上单调递减,在 $(0,+\infty)$ 上单调递增.

从而 h(x) > h(0) = 0,即 g'(x) > 0.

所以g(x)的单调递增区间为 $(-\infty, 0)$ 和 $(0, +\infty)$.

当 $0 < x_1 < x_2$ 时, $g(x_1) < g(x_2)$,即 $f(x_1) - f(x_2) < \frac{1}{x} - \frac{1}{x_1}$;

当 $x_1 < x_2 < 0$ 时, $g(x_1) < g(x_2)$,即 $f(x_1) - f(x_2) < \frac{1}{x_1} - \frac{1}{x_2}$.

综上, 当 $x_1 < x_2$ 且 $x_1 \cdot x_2 > 0$ 时, $f(x_1) - f(x_2) < \frac{1}{x_1} - \frac{1}{x_2}$.

解: (1) A:(1,2),(2,3),(3,1), 或A:(1,3),(3,2),(2,1).

-----4 分

(II) 因为(p,q)和(q,p)不同时出现在A中,

故 m ≤ C₆² = 15, 所以1,2,3,4,5,6 每个数至多出现5次.

又因为 $x_{i+1} = y_i (i = 1, 2, \dots, m-1)$,

所以只有x,, y, 对应的数可以出现5次,

故
$$m \leq \frac{1}{2} \times (4 \times 4 + 2 \times 5) = 13$$
.

-----9 分

www.gaokzx

(III) 当 N 为奇数时, 先证明 T(N+2) = T(N) + 2N + 1.

因为(p,q)和(q,p)不同时出现在A中,所以 $T(N) \le C_N^2 = \frac{1}{2}N(N-1)$.

当 N=3 时,构造 A:(1,2),(2,3),(3,1) 恰有 C_3 项,且首项的第 1 个分量与末项的第 2 个分量都为 1.

对奇数 N,如果可以构造一个恰有 C_N^2 项的序列 A,且首项的第 1 个分量与末项的第 2 个分量都为 1,那么对奇数 N+2 而言,可按如下方式构造满足条件的序列 A':首先,对于如下 2N+1 个数对集合:

$$\{(1, N+1), (N+1,1)\}, \{(1, N+2), (N+2,1)\}, \{(2, N+1), (N+1,2)\}, \{(2, N+2), (N+2,2)\}, \dots,$$

 $\{(N, N+1), (N+1, N)\}$, $\{(N, N+2), (N+2, N)\}$, $\{(N+1, N+2), (N+2, N+1)\}$,

每个集合中都至多有一个数对出现在序列 A' 中,所以 $T(N+2) \le T(N) + 2N + 1$. 其次,对每个不大于 N 的偶数 $i \in \{2,4,\cdots,N-1\}$,将如下 4 个数对并为一组: (N+1,i),(i,N+2),(N+2,i+1),(i+1,N+1) ,

共得到 $\frac{N-1}{2}$ 组,将这 $\frac{N-1}{2}$ 组数对以及(1,N+1),(N+1,N+2),(N+2,1)按如下方

式补充到 A 的后面,即:A,(1,N+1),(N+1,2),(2,N+2),(N+2,3),(3,N+1),...,(N+1,N-1),(N-1,N+2),(N+2,N),(N,N+1),(N+1,N+2),(N+2,1).

此时恰有T(N)+2N+1项,所以T(N+2)=T(N)+2N+1.

综上, 当 N 为奇数时,

$$T(N) = (T(N) - T(N-2)) + (T(N-2) - T(N-4)) + \dots + (T(5) - T(3)) + T(3)$$

$$= [2(N-2)+1] + [2(N-4)+1] + \dots + (2\times3+1) + 3$$

$$= \frac{1}{2}N(N-1).$$
......15 \(\frac{1}{2}\)

北京高一高二高三期末试题下载

京考一点通团队整理了【2024年1月北京各区各年级期末试题&答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期末**】或者点击公众号底部栏目<<mark>试题专区</mark>>,进入各年级汇总专题,查看并下载电子版试题及答案!

Q 京考一点通

