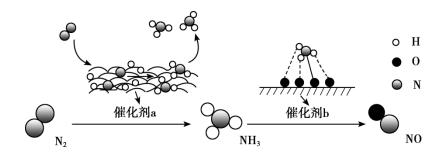

2019 北京朝阳高三二模

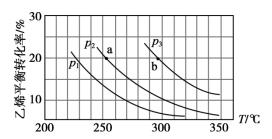
化 学


2019.5

6. 我国在物质制备领域成绩斐然,下列物质属于有机物的是

- 7. 下列过程中没有发生化学变化的是
 - A. 浓硫酸使蔗糖变黑
- B. 二氧化氮低温冷凝形成无色液体
- C. 液氨汽化起制冷作用 D. 亚硫酸钠除去水中的溶解氧
- 8. 下列解释事实的化学用语不正确的是
 - A. 闪锌矿(ZnS)经 CuSO₄溶液作用后,转化为铜蓝(CuS): ZnS + Cu²⁺ === CuS + Zn²⁺

 - C. 电解 NaCl 溶液,阴极区溶液 pH 增大: 2H₂O + 2e == H₂↑+ 20H
 - D. 钢铁发生吸氧腐蚀,负极反应为: $Fe-3e^{-} == Fe^{3+}$
- 9. 氮及其化合物的转化过程如下图所示。

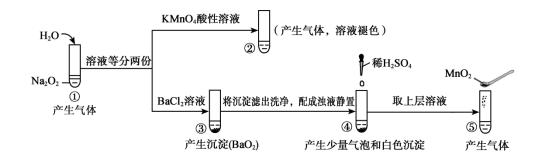


下列分析合理的是

- A. 催化剂 a 表面发生了极性共价键的断裂和形成
- B. N₂与 H₂反应生成 NH₃的原子利用率为 100%

- C. 在催化剂 b 表面形成氮氧键时,不涉及电子转移
- D. 催化剂 a、b 能提高反应的平衡转化率

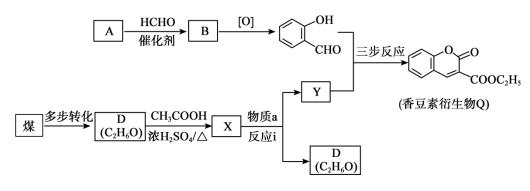
随温度、压强的变化关系如下(起始时, $n(H_2O) = n(C_2H_4) = 1 \text{ mol}$,容器体积为 1 L)。


下列分析不正确的是

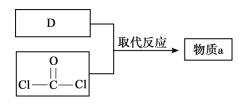
- A. 乙烯气相直接水合反应的ΔH<0
- B. 图中压强的大小关系为: $p_1 > p_2 > p_3$
- C. 图中 a 点对应的平衡常数 $K = \frac{5}{16}$
- D. 达到平衡状态 a、b 所需要的时间: a>b
- 11. 线型 PAA(CH₂-CH n) 具有高吸水性,网状 PAA 在抗压性、吸水性等方面优于线型 PAA。网状 PAA 的制 COONa

备方法是:将丙烯酸用 NaOH 中和,加入少量交联剂 a,再引发聚合。其部分结构片段如下:

下列说法不正确的是


- A. 线型 PAA 的单体不存在顺反异构现象
- B. 形成网状结构的过程发生了加聚反应
- C. 交联剂 a 的结构简式是 CH=CH2
- D. PAA 的高吸水性与—COONa 有关
- 12. 探究 Na₂O₂与水的反应,实验如下:

(己知: $H_2O_2 \Longrightarrow H^+ + HO_2^-$ 、 $HO_2^- \Longrightarrow H^+ + O_2^{2-}$)


下列分析不正确的是

- A. ①、⑤中产生的气体能使带火星的木条复燃
- B. ①、④中均发生了氧化还原反应和复分解反应
- C. ②、⑤中 KMnO₄与 MnO₂的作用不同,产生气体的量也不同
- D. 通过③能比较酸性: HC1>H₂O₂
- 25. (17分)香豆素衍生物 Q 是合成抗肿瘤、抗凝血药的中间体,其合成路线如下。

已知: I.
$$-C-H$$
 + $-CH_2-C \longrightarrow$ RCOOR" + R'OH

- (1) A 的分子式为 C₆H₆O, 能与饱和溴水反应生成白色沉淀。
 - ① 按官能团分类, A 的类别是。
 - ② 生成白色沉淀的反应方程式是。
- (2) A→B 的反应方程式是。
- (3) D→X 的反应类型是____。
- (4) 物质 a 的分子式为 C₃H₁₀O₃,核磁共振氢谱有两种吸收峰,由以下途径合成:

物质 a 的结构简式是_____。

- (5) 反应 i 为取代反应。Y 只含一种官能团,Y 的结构简式是。
- (6) 生成香豆素衍生物 Q 的"三步反应",依次为"加成反应→消去反应→取代反应",其中"取代反应" 的化学方程式为____。
- (7)研究发现,一定条件下将香豆素衍生物Q水解、酯化生成 COOH,

其水溶性增强,更有利于合成其他药物。请说明其水溶性增强的原因:

26. (13 分)以海绵铜(CuO、Cu)为原料制备氯化亚铜(CuCl)的一种工艺流程如下。

(1) "溶解"过程:

生成 CuSO₄ 的反应方程式: CuO + H₂SO₄ == CuSO₄ + H₂O、_____。

- (2) "吸收"过程:
 - ① $2NO(g) + O_2(g) \implies 2NO_2(g)$ $H = -112.6 \text{ kJ} \cdot \text{mol}^{-1}$ 提高 NO 平衡转化率的方法是____ (写出两种)。
 - ② 吸收 NO2的有关反应如下:

反应
$$I: 2NO_2(g) + H_2O(1) == HNO_3(aq) + HNO_2(aq)$$
 $H = -116.1 \text{ kJ} \cdot \text{mol}^{-1}$ 反应 $II: 3HNO_2(aq) == HNO_3(aq) + 2NO(g) + H_2O(1)$ $H = -75.9 \text{ kJ} \cdot \text{mol}^{-1}$ 用水吸收 NO_2 生成 HNO_3 和 NO 的热化学方程式是_____。

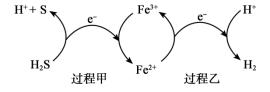
(3) "电解"过程:

HNO₂为弱酸。通过电解使 HNO₃得以再生,阳极的电极反应式是。

(4) "沉淀"过程:

- ① 产生 CuCl 的离子方程式是 。
- ② 加入适量 Na₂CO₃,能使沉淀反应更完全,原因是____。
- (5) 测定 CuCl 含量:

称取氯化亚铜样品 m g,用过量的 $FeC1_3$ 溶液溶解,充分反应后加入适量稀硫酸,用 x mol • L^{-1} 的 $K_2Cr_2O_7$ 溶液滴定到终点,消耗 $K_2Cr_2O_7$ 溶液 y mL。滴定时发生的离子反应: $Cr_2O_7^{2-}$ + $6Fe^{2^+}$ + $14H^+$ === $2Cr^{3^+}$ + $6Fe^{3^+}$ + $7H_2O$

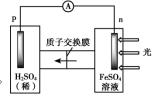

样品中 CuCl (M=99.5 g·mol⁻¹)的质量分数为。

- 27. (14分)将 HAS 转化为可再利用的资源是能源研究领域的重要课题。
 - (1) H₂S 的转化

I	克劳斯法	$H_2S \xrightarrow{O_2} S$
II	铁盐氧化法	$H_2S \xrightarrow{Fe^{3+}} S$
III	光分解法	$H_2S \xrightarrow{\mathcal{H}} H_2 + S$
ウェルルツラ4g N.G		

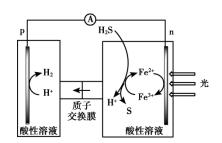
- ① 反应 I 的化学方程式是____。
- ② 反应 II: __+ 1 $H_2S =$ ____ Fe^{2+} + ____ $S \downarrow$ + ____ (将反应补充完整)。
- ③ 反应III体现了 H₂S 的稳定性弱于 H₂O。结合原子结构解释二者稳定性差异的原因: _____。
- (2) 反应III硫的产率低,反应II的原子利用率低。我国科研人员设想将两个反应耦合,

实现由 H₂S 高效产生 S 和 H₂, 电子转移过程如下图。


过程甲、乙中,氧化剂分别是____。

- (3) 按照设计,科研人员研究如下。
 - ① 首先研究过程乙是否可行,装置如右图。经检验,n 极区产生了 Fe³+, p 极

产生了 H₂。n 极区产生 Fe³⁺的可能原因:


$$i \cdot Fe^{2+} - e^{-} = Fe^{3+}$$

ii. 2H₂O -4e⁻=O₂ +4H⁺, _____(写离子方程式)。

经确认, i 是产生 Fe3+的原因。过程乙可行。

- ② 光照产生 Fe^{3+} 后,向 n 极区注入 H_2S 溶液,有 S 生成,持续产生电流,p 极产生 H_2S 研究 S 产生的原因,设计如下实验方案: 。 经确认,S 是由 Fe^{3+} 氧化 H_2S 所得, H_2S 不能直接放电。过程甲可行。
- (4) 综上,反应Ⅱ、Ⅲ能耦合,同时能高效产生 Ha和S,其工作原理如下图。

进一步研究发现,除了 Fe^{3+}/Fe^{2+} 外, I_3^-/I^- 也能实现上图所示循环过程。结合化学用语,说明 I_3^-/I^- 能够 使 S 源源不断产生的原因:

28. (14 分) 某小组探究 Br_2 、 I_2 能否将 Fe^{2+} 氧化,实验如下。

实验	试剂 x	现象及操作
献剂x □	溴水	i. 溶液呈黄色,取出少量滴加 KSCN 溶液,变红
↓ FeSO₄溶液	碘水	ii.溶液呈黄色,取出少量滴加 KSCN 溶液,未变红

- (1) 实验 i 中产生 Fe3+ 的离子方程式是。
- (3) 针对实验 ii 中未检测到 Fe^{3+} ,小组同学分析: $I_2 + 2Fe^{2+}$ ➡ $2Fe^{3+} + 2I^-$ (反应 a)

限度小,产生的 $c(Fe^{3+})$ 低;若向 ii 的黄色溶液中加入 $AgNO_3$ 溶液,可产生黄色

- (4) 针对小组同学的分析,进行实验iii:向ii的黄色溶液中滴加足量 AgNO。溶液。现象及操作如下:
 - I. 立即产生黄色沉淀,一段时间后,又有黑色固体从溶液中析出;取出少量黑色固体,洗涤后, (填操作和现象),证明黑色固体含有 Ag。
 - II. 静置,取上层溶液,用 KSCN 溶液检验,变红;用 CC14萃取,无明显现象。
- (5) 针对上述现象, 小组同学提出不同观点并对之进行研究。
 - ① 观点 1: 由产生黄色沉淀不能判断反应 a 的平衡正向移动,说明理由: _____。经证实观点 1 合理。
 - ② 观点 2: Fe³⁺ 可能由 Ag⁺ 氧化产生。

实验iv: 向 $FeSO_4$ 溶液滴加 $AgNO_3$ 溶液,_____ (填现象、操作),观点 2 合理。

(6) 观点 1、2 虽然合理,但加入 $AgNO_3$ 溶液能否使反应 a 的平衡移动,还需要进一步确认。设计实验: 取 ii 的黄色溶液,______(填操作、现象)。由此得出结

论:不能充分说明(4)中产生 Fe³⁺的原因是由反应 a 的平衡移动造成的。

化学试题答案

6. A 7. C 8. D 9. B 10. B 11. C 12. D

25. (17分)

(1) ① 酚类

$$(2) \qquad \begin{array}{c} \text{OH} & \text{OH} \\ \text{CH}_2\text{OH} \end{array}$$

(3) 取代反应(酯化反应)

OH
$$CH = C - COOCH_2CH_3$$

$$COOCH_2CH_3$$

$$COOCH_2CH_3$$

$$COOCH_2CH_3$$

$$COOCH_2CH_3$$

(7) - COOH 是强亲水性基团

26. (13分)

- (1) $3Cu + 2HNO_3 + 3H_2SO_4 = 3CuSO_4 + 2NO \uparrow +4H_2O$
- (2) ① 降低温度、增大压强、提高 $c(O_2)$ 等
 - ② $3NO_2(g) + H_2O(l) = 2HNO_3(aq) + NO(g) \Delta H = -212.1 \text{ kJ mol}^{-1}$
- (3) $HNO_2 2e + H_2O = 3H^+ + NO_3^-$
- (4) ① $2Cu^{2+} + SO_2 + 2Cl^- + 2H_2O = 2CuCl \downarrow + SO_4^{2-} + 4H^+$
 - ② CO_3^{2-} 消耗 H^+ ,使 $c(H^+)$ 减小,有利于生成 CuCl 的反应正向进行
- (5) $\frac{0.597xy}{m} \times 100\%$

27. (14分)

- (1) ① $2H_2S + O_2 = 2H_2O + 2S$
 - ② $2Fe^{3+} + H_2S = 2Fe^{2+} + S + 2H^+$
 - ③ 0与S位于同主族,原子半径S>0,得电子能力S<0,非金属性S<0,氢化物稳

定性 H₂S<H₂O

- (2) Fe^{3+} , H^+
- (3) ① $4Fe^{2+} + O_2 + 4H^+ = 4Fe^{3+} + 2H_2O$
 - ② 将 FeSO₄ 溶液换成 H₂S 溶液
- (4) I^- 在电极上放电: $3I^- 2e^- = I_3^-$ 。 I_3^- 在溶液中氧化 H_2S : $I_3^- + H_2S = 3I^- + S + 2H^+$ 。 I^- 和 I_3^- 循环反应。
- 28. (14分)
- (1) $2Fe^{2+} + Br_2 = 2Fe^{3+} + 2Br^{-}$
- (2) >
- (3) 正向
- (4) 加入浓硝酸,黑色固体消失,生成红棕色气体。再向溶液中加入 NaCl 溶液,出现白色沉淀
- (5) ① 碘水与 AgNO3 溶液反应产生黄色沉淀
 - ② 生成黑色固体,向上层清液中加入 KSCN 溶液,变红
- (6) 加入少量 AgNO3 溶液,产生黄色沉淀后,立即向上层清液中加入过量 KSCN 溶液,不变红