2019 北京昌平区高一(上)期末

2019.1

本试卷共5页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.

第一部分(选择题 共50分)

一、选择题: 本大题共 10 小题, 每小题 5 分, 共 50 分. 在每小题给出的四个选项中

1. 已知集合 $A = \{-1,0,2\}$, $B = \{0,2,3\}$, 那么 $A \cup B$ 等于

- A. $\{-1,0,2,3\}$ B. $\{-1,0,2\}$
- C. $\{0, 2, 3\}$

2. 已知角 α 的终边经过点 P(3,-4),那么 $\sin \alpha$ 的值为

3. sin 210° 的值为

4. 已知向量 $\mathbf{a} = (1,2), \mathbf{b} = (2,1-m)$, 且 $\mathbf{a} \perp \mathbf{b}$, 那么实数m的值为

- A. -2
- B. 1
- C. 2

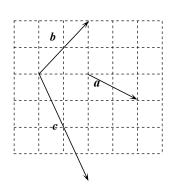
5. 下列函数中,既是偶函数,又在区间 $(-\infty,0)$ 上为减函数的为

- A. $y = \frac{1}{x}$
- B. $y = \cos x$

6. 已知 $a = 4^{0.5}$, $b = \log_{0.5} 4$, $c = 0.5^4$, 那么 a, b, c 的大小关系为

- A. b < c < a
- B. c < b < a
- $C. \quad b < a < c$

7. 如果二次函数 $y = x^2 + 2mx + (m+2)$ 有两个不同的零点,那么 m 的取值范围为



A.
$$(-2, 1)$$

 $(-\infty, -2) \bigcup (1, +\infty)$

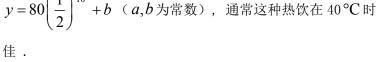
A.
$$(-2, 1)$$
 B. $(-1, 2)$ C. $(-\infty, -1) \cup (2, +\infty)$

- 8. 为了得到函数 $y = \sin 2x$ 的图象,只需将函数 $y = \sin(2x \frac{\pi}{3})$ 的图象
- A. 向左平行移动 $\frac{\pi}{3}$ 个单位 B. 向左平行移动 $\frac{\pi}{6}$ 个单位
- C. 向右平行移动 $\frac{\pi}{3}$ 个单位 D. 向右平行移动 $\frac{\pi}{6}$ 个单位
- 9. 如图,在 6×6 的方格中,已知向量a,b,c的起点和终点均在

格点,且满足向量 $\mathbf{a} = x\mathbf{b} + y\mathbf{c}(x, y \in \mathbf{R})$,那么x - y =

10. 某种热饮需用开水冲泡,其基本操作流程如下: ①先将水加热到 $100\,^{\circ}$ C,水温 $v(^{\circ}$ C) 与时间 $t(\min)$ 近似 满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度 $y(^{\circ}C)$ 与时间 $t(\min)$ 近似满足函数的关系式为

 $y = 80 \left(\frac{1}{2}\right)^{\frac{l-a}{10}} + b \ (a,b)$ 为常数),通常这种热饮在 40°C 时,口感最

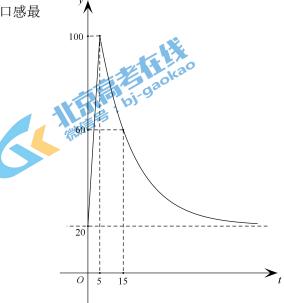


某天室温为20°C时,冲泡热饮的部分数据如图所示.

那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,

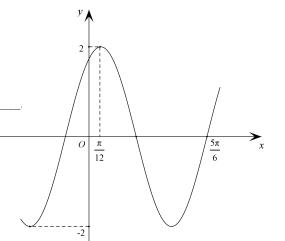
最少需要的时间为

- 25 min



第二部分(非选择题 共100分)

- 二、填空题:本大题共5小题,每小题6分,共30分.
 - 11. 已知集合 $A = \{x | x > 2\}$, $B = \{x | 0 < x < 4\}$,则 $A \cap B =$ ______
 - 12. $\log_2 8 + 4^{\frac{1}{2}} = =$ ______. (用数字作答)



- 13. 已知向量 a, b, |a| = 1, |b| = 1,向量 a = b 的夹角为 60° ,那么 $(2a + b) \cdot (a b) =$
- 14. 已知函数 $f(x) = 2\sin(\omega x + \varphi)$ (其中 $\omega > 0$, $|\varphi| < \frac{\pi}{2}$)

的图象如图所示,那么函数 $\omega =$

 $\varphi =$ _____

- 15. 已知函数 f(x) 在 (-2,2) 上存在零点,且满足 $f(-2)\cdot f(2)>0$,则函数 f(x) 的一个解析式为______. (只需写出一个即可)
- 16. 己知函数 f(x) 是定义在 **R** 上的奇函数 x>0 时, $f(x)=x^2-2ax+a+2$, 其中 $a\in \mathbf{R}$.
 - (I) 当a=1时,f(-1)=____;
 - (II) 若 f(x) 的值域是 \mathbf{R} ,则 a的取值范围为_____.
- 三、解答题(共5个小题,共70分)
 - 17. (本小题满分 14 分)

已知 α 是第二象限角,且 $\tan(\alpha + \frac{\pi}{4}) = -\frac{1}{7}$.

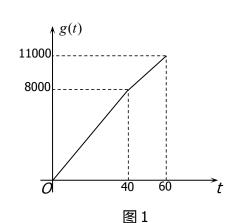
- (I) 求 $\tan \alpha$ 的值;
- (II) 求 cos 2α的值.
- 18. (本小题满分 14 分)

已知函数
$$f(x) = \cos^2 x + \sin x \cos x - \frac{1}{2}$$

- (I) 求函数 f(x) 的最小正周期;
- (II) 求函数 f(x) 的单调递减区间;
- (III) 求函数 f(x) 在区间 $\left[0, \frac{\pi}{2}\right]$ 上的最小值.
- 19. (本小题满分 14 分)

已知函数 $f(x) = \lg(1-x) - \lg(1+x)$.

- (I) 求函数的 f(x) 定义域;
- (II) 判断函数 f(x) 的奇偶性,并用定义证明你的结论;
- (III) 若函数 f(x) < 0, 求实数 x 的取值范围.



20. (本小题满分 14 分)

为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的"经典名著"和"古诗词"的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:

表 1

t	0	10	20	30
f(t)	0	2700	5200	7500

小明阅读"经典名著"的阅读量 f(t) (单位:字)与时间 t (单位:分钟)满足二次函数关系,部分数据如表 1 所示;阅读"古诗词"的阅读量 g(t) (单位:字)与时间 t (单位:分钟)满足如图 1 所示的关系.

- (I) 请分别写出函数 f(t) 和 g(t) 的解析式;
- (II) 在每天的一小时课外阅读活动中,小明如何分配"经典名著"和"古诗词"的阅读时间,使每天的阅读量最大,最大值是多少?

21. (本小题满分 14 分)

已知函数 f(x) 的定义域为 D ,对于给定的 $k(k \in \mathbb{N}^*)$,若存在 $[a,b] \subseteq D$,使得函数 f(x) 满足:

- ① 函数 f(x)在 [a,b]上是单调函数;
- ② 函数 f(x) 在 [a,b] 上的值域是 [ka,kb],则称 [a,b] 是函数 f(x) 的 k 级 "理想区间".
- (I) 判断函数 $f_1(x) = x^2$, $f_2(x) = \sin \pi x$ 是否存在 1 级 "理想区间". 若存在,请写出它的"理想区间"; (只需直接写出结果)
 - (II) 证明:函数 $f(x) = e^x$ 存在 3 级 "理想区间"; (e = 2.71828...)
 - (III) 设函数 $g(x) = \frac{4x}{x^2 + 1}$, $x \in [0,1]$, 若函数 g(x) 存在 k 级"理想区间", 求 k 的值.

数学试题答案

-、选择题: (本大题共 10 小题,每小题 5 分,共 50 分.)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	В	D	С	D	A	С	В	В	С

- 二、填空题(本大题共6小题,每小题5分,共30分.)
- ${x \mid 2 < x < 4}$ 11.

- 14. 2; $\frac{\pi}{2}$
- 15. $f(x) = x^2 1$ (不是唯一解)

- 16. -2; (-∞,-2]∪[2,+∞) (注: 第14, 16题第一问3分,第二问2分).
- 三、解答题(本大题共5小题,共70分:解答应写出文字说明,证明过程或演算步骤.)
- 17. (本小题满分 14分)

(II) 由(I) 可得,
$$\sin \alpha = \frac{4}{5}, \cos \alpha = -\frac{3}{5}$$
.

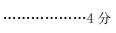
所以
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = -\frac{7}{25}$$
.

(本小题满分14分) 18.

解: (I)
$$f(x) = \frac{1+\cos 2x}{2} + \frac{1}{2}\sin 2x - \frac{1}{2}$$

$$= \frac{1}{2}\cos 2x + \frac{1}{2}\sin 2x$$

$$= \frac{\sqrt{2}}{2}\sin(2x + \frac{\pi}{4})$$



所以 函数 f(x) 的最小正周期是 $T = \frac{2\pi}{2} = \pi$.

(II) 由题意知 $2k\pi + \frac{\pi}{2} \le 2x + \frac{\pi}{4} \le 2k\pi + \frac{3\pi}{2}, k \in \mathbb{Z},$

故
$$k\pi + \frac{\pi}{8} \le x \le k\pi + \frac{5\pi}{8}$$
,

(III) 因为 $0 \le x \le \frac{\pi}{2}$,

所以当
$$\frac{\pi}{4} \le 2x + \frac{\pi}{4} \le \frac{5\pi}{4}$$
,

所以
$$2x + \frac{\pi}{4} = \frac{5\pi}{4}$$
,即 $x = \frac{\pi}{2}$ 时, $f(x)_{\min} = -\frac{1}{2}$

19. (本小题满分 14 分)

解: (I) 由
$$\begin{cases} 1+x>0, \\ 1-x>0, \end{cases}$$
 解得 $\begin{cases} x>-1, \\ x<1. \end{cases}$

所以
$$-1 < x < 1$$
, 故函数 $f(x)$ 的定义域是 $(-1,1)$. ……4 分

(II) 函数 f(x) 是奇函数.

证明:由(I)知定义域关于原点对称.

因为
$$f(-x) = \lg(1-(-x)) - \lg(1+(-x))$$

$$= -(\lg(1-x) - \lg(1+x)) = -f(x),$$

$$\begin{cases} -1 < x < 1 \\ 1 - x < 1 + x \end{cases}$$
 (12 分

20. (本小题满分 14 分)

(II) 设小明对"经典名著"的阅读时间为 $t(0 \le t \le 60)$,则对"古诗词"的阅读时间为60-t.

-----7 分

① $\pm 0 \le 60 - t < 40$, $\mathbb{D} 20 < t \le 60$ \mathbb{D} ,

$$h(t) = f(t) + g(t) = -t^2 + 280t + 200(60 - t)$$

$$=-t^2+80t+12000$$

$$=-(t-40)^2+13600$$

所以当 t = 40时,h(t)有最大值 13600.

……10分

$$h(t) = f(t) + g(t) = -t^2 + 280t + 150(60 - t) + 2000$$

$$=-t^2+130t+11000$$

因为h(t)的对称轴方程为t=65,

所以 当 $0 \le t \le 20$ 时,h(t)是增函数,

所以 当t = 20时,h(t)有最大值为 13200.

………13 分

因为 13600>13200,

21. (本小题满分14分)

解: (I) 函数 $f_1(x) = x^2$ 存在 1 级 "理想区间","理想区间"是 [0,1]; $f_2(x) = \sin \pi x$ 不存在 1 级 "理想区间".

(II) 设函数 $f(x) = e^x$ 存在 3 级"理想区间",则存在区间 [a,b],使 f(x) 的值域是 [3a,3b].

因为函数 $f(x) = e^x$ 在 R 上单调递增,

所以
$$\begin{cases} e^a = 3a, \\ e^b = 3b \end{cases}$$
 即方程 $e^x = 3x$ 有两个不等实根

设 $h(x) = e^x - 3x$,

可知,
$$h(0) = e^0 - 3 \times 0 = 1 > 0$$
, $h(1) = e^1 - 3 \times 1 < 0$, $h(2) = e^2 - 3 \times 2 > 0$,

由零点存在定理知,存在 $x_1 \in (0,1)$, $x_2 \in (1,2)$, 使 $h(x_1) = 0$, $h(x_2) = 0$.

设 $a=x_1$, $b=x_2$, 所以方程组有解, 即函数 $f(x)=e^x$ 存在 3 级 "理想区间". ………9 分

(III)法一:

若函数 g(x) 存在 k 级"理想区间",则存在区间 [a,b],函数 g(x) 的值域是 [ka,kb].

因为
$$g(x) = \frac{4x}{x^2 + 1}$$
,任取 $x_1, x_2 \in [0,1]$,且 $x_1 < x_2$,

有
$$g(x_1) - g(x_2) = \frac{4x_1}{x_1^2 + 1} - \frac{4x_2}{x_2^2 + 1} = \frac{4(x_1 - x_2)(1 - x_1x_2)}{(x_1^2 + 1)(x_2^2 + 1)}$$
,

因为 $0 \le x_1 < x_2 \le 1$, 所以 $x_1 - x_2 < 0, 1 - x_1 x_2 > 0$,

所以 $g(x_1)-g(x_2)<0$, 即 $g(x_1)< g(x_2)$,

所以 函数 $g(x) = \frac{4x}{x^2 + 1}$ 在 [0,1] 上为单调递增函数.

所以 $\begin{cases} g(a) = ka, \\ g(b) = kb \end{cases}$, 于是方程 $\frac{4x}{x^2 + 1} = kx$ 在[0,1]上有两个不等实根.

即 $x[kx^2+k-4]=0$ 在 [0,1] 上有两个不等实根.

显然 x = 0 是方程的一个解,所以 $kx^2 + k - 4 = 0$ 在 (0,1] 至少有一个实根.

- (1) 当 k = 4 时, $x_1 = x_2 = 0$,不合题意,舍。 (2) 当 k > 4 时,方程无实根,舍;

(3)
$$0 < k < 4$$
 by, $x_1 = \sqrt{\frac{4-k}{k}}, x_2 = -\sqrt{\frac{4-k}{k}}$ (\$\frac{1}{k}\$)

所以
$$x_1 = \sqrt{\frac{4-k}{k}} \le 1$$
, 解出 $k \ge 2$.

所以 $2 \le k < 4$,又因为 $k \in \mathbb{N}^*$,所以k = 2 或k = 3

法二: 因为 $g(x) = \frac{4x}{x^2 + 1}$, 任取 $x_1, x_2 \in [0,1]$, 且 $x_1 < x_2$,

有
$$g(x_1) - g(x_2) = \frac{4x_1}{x_1^2 + 1} - \frac{4x_2}{x_2^2 + 1} = \frac{4(x_1 - x_2)(1 - x_1x_2)}{(x_1^2 + 1)(x_2^2 + 1)}$$

因为 $0 \le x_1 < x_2 \le 1$,所以 $x_1 - x_2 < 0, 1 - x_1 x_2 > 0$,

若函数 g(x) 存在 k 级"理想区间",则存在区间 [a,b],函数 g(x) 的值域是 [ka,kb].

$$\iint \begin{cases} \frac{4a}{a^2 + 1} = ka & (1) \\ \frac{4b}{b^2 + 1} = kb & (2) \end{cases}$$

(i) 当a = 0时, (1) 式成立

因为a = 0,所以 $b \neq 0$,所以 $\frac{4}{b^2 + 1} = k$.

因为 $[a,b]\subseteq [0,1]$, 所以 $0 \le a < b \le 1$.

所以 $0 < b \le 1$, 即 $0 < b^2 \le 1$, 得 $1 < b^2 + 1 \le 2$, 于是 $\frac{1}{2} \le \frac{1}{b^2 + 1} < 1$

故 $2 \le \frac{4}{b^2 + 1} < 4$. 又因为 $k \in \mathbb{N}^*$,所以k = 2或k = 3.

当k=2时,b=1;当k=3时, $b=\frac{\sqrt{3}}{3}$.

所以 $[a,b]\subseteq [0,1]$ 或 $[a,b]\subseteq [0,\frac{\sqrt{3}}{3}]$ 满足题意,故 k=2 或 k=3.

(ii) 当 $a \neq 0$ 时,(1) 式化为 $\frac{4}{a^2+1} = k$ (3) ,

因为 $a \neq 0$, $b \neq 0$,所以 $\frac{4}{b^2 + 1} = k$ (4)

所以 $\frac{4}{a^2+1} = \frac{4}{b^2+1}$, 所以 $a^2 = b^2$, 即a = b与题意不符合。

综上, k = 2或k = 3.

······14 分

【其它正确解法相应给分】

