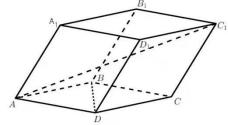
第一部分(选择题 共30分)

一、选择题:共10小题,每	身小题 3 分, 共 30 分。在	每小题列出的四个选	项中,选出符合题目要求的·	一项。
(1)下列直线中,倾斜角之	为锐角的是		TO OLY	
(A) $x - y + 1 = 0$ (B) $y = -2x + 1$ (C)	$y = 1 \tag{D}$	x=2	
(2) 已知 $\{a_n\}$ 为等差数列	$, \mathbb{H} \ a_1 = 1 \ , a_3 + a_4 + a_5$	$=15$, $Ma_7 =$	x=2 水 $x=2$ 水 $x=2$	
(A) 12	(B) 9 (C) 6	(D) 3		
(3) 抛物线 $y^2 = -8x$ 的焦	$E \leq F$ 到准线 l 的距离为			
(A) 16 (B) 8 (C) 4		(D) 2	
(4) 已知平面 α , β 的法			且 α // β ,则 $x+y=$	
$(A) \frac{4}{3}$	(B) 1 (C) -3	(D)	-5	
(5) 已知 △ <i>ABC</i> 的三个1	顶点是 A(-3,0), B(6,2),	C(0,-6),则边 AC	上的高所在的直线方程为	
(A) $x + 2y - 2 = 0$		(B) $x-2y-$	2 = 0	
(c) $x-2y-4=0$		(D) $2x + y -$	14 = 0	
(6) 设数列 $\{a_n\}$ 的前 n 项	和为 S_n ,若 $a_2 = 7$, a_n	$a_n = a_n - 4$, $n \in \mathbb{N}^*$	则 S_1 , S_2 , S_3 , S_4 中,	最大
始 目.				
的是				
(A) S_1	(B) S_2	(C) S_3	(D) S ₄	13
(A) S_1	_	-		\overrightarrow{AD}_1 ,
(A) S ₁ (7)在长方体 ABCD - A ₁ 4	$B_1C_1D_1 \oplus AB = AD = 4$	-		\overline{AD}_{1} ,
(A) S_1	$B_1C_1D_1 \oplus AB = AD = 4$	-		$\overrightarrow{AD}_{_{1}}$,
(A) S ₁ (7)在长方体 ABCD - A ₁ 4	$B_1C_1D_1 \oplus AB = AD = 4$	-		$\overline{AD_1}$,
(A) S_1 (7)在长方体 $ABCD - A_1A_2$ $\overrightarrow{BE} = \frac{1}{3} \overrightarrow{BB_1}, \mathbb{N} \overrightarrow{B_1 B_2} $	$B_1C_1D_1 \oplus AB = AD = 4$	$A_1 = 3$,点 E, F		$\overline{AD_i}$,
(A) S_1 (7)在长方体 $ABCD - A_{1}A_{2}$ $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BB_{1}}, \mathbb{N} \overrightarrow{B_{1}B_{2}} $ (A) 1 (C) 2	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	(B) $\frac{4}{3}$ (D) $\frac{8}{3}$		$\overline{AD_1}$,
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3} \overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1B_1} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆 $(x - A_1)$ 充分而不必要条件	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	$A_1 = 3$,点 $E, F = 3$ (B) $\frac{4}{3}$ (D) $\frac{8}{3}$ 油相切"的 (B) 必要而不	分别在棱 BB_1, B_1C_1 上, \overline{EF} //	K.CC
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3} \overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1B_1} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆 $(x - A_1)$ 充分而不必要条件	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	$A_1 = 3$,点 $E, F = 3$ (B) $\frac{4}{3}$ (D) $\frac{8}{3}$ 油相切"的 (B) 必要而不	分别在棱 BB_1, B_1C_1 上, \overline{EF} //	K.CC
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3} \overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1B_1} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆 $(x - A_1)$ 充分而不必要条件	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	$A_1 = 3$,点 $E, F = 3$ (B) $\frac{4}{3}$ (D) $\frac{8}{3}$ 油相切"的 (B) 必要而不	分别在棱 BB_1, B_1C_1 上, \overline{EF} //	K.CC
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3} \overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1B_1} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆 $(x - A_1)$ 充分而不必要条件	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	$A_1 = 3$,点 $E, F = 3$ (B) $\frac{4}{3}$ (D) $\frac{8}{3}$ 油相切"的 (B) 必要而不	分别在棱 BB_1, B_1C_1 上, \overline{EF} //	K.CC
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1F} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆($x - (A)$ 充分而不必要条件	$B_1C_1D_1$ 中, $AB = AD = 4$ $ \vec{r} = $ $ \vec{r} = $ $ \vec{r} = $ $ \vec{r} = $ $ \vec{r} = $	$AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $AA_1 = 3$,是	分别在棱 <i>BB</i> ₁ , <i>B</i> ₁ <i>C</i> ₁ 上, <i>EF</i> // E <i>F</i> //	K.CC
(A) S_1 (7)在长方体 $ABCD - A_1$ $\overrightarrow{BE} = \frac{1}{3}\overrightarrow{BB_1}$, 则 $ \overrightarrow{B_1F} $ (A) 1 (C) 2 (8) " $a = 2$ "是"圆($x - (A)$ 充分而不必要条件	$B_1C_1D_1 \Leftrightarrow AB = AD = A$ $ \vec{r} = \vec{r} $	$AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $E, F = 3$ $AA_1 = 3$,点 $AA_1 = 3$,是	分别在棱 <i>BB</i> ₁ , <i>B</i> ₁ <i>C</i> ₁ 上, <i>EF</i> // E <i>F</i> //	K.CC

(D) 3

(10) 均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线的均匀压缩,可用曲线上点的坐标来描述. 设曲线 C 上任意一点 P(x,y), 若将曲线 C 纵向均匀压缩至原来的一半,则点 P 的对应点为 $P_1(x,\frac{1}{2}y)$.同理,若将曲线 C 横向均匀压缩至原来的一半,则曲线 C 上点 P 的对应点为 $P_2(\frac{1}{2}x,y)$. 若将单位圆 $x^2+y^2=1$ 先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的 $\frac{1}{3}$,得到的曲线方程为

(A)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$


(B)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

(C)
$$4x^2 + 9y^2 = 1$$

(D)
$$9x^2 + 4y^2 = 1$$

第二部分(非选择题 共70分)

- 二、填空题: 共6小题, 每小题4分, 共24分。
- (11) 若过点O(0,0)和M(1,3)的直线与直线ax-y-2=0平行,则a=_____.
- (12) 写出一个离心率e=2且焦点在x轴上的双曲线的标准方程______,并写出该双曲线的渐近线方程______
- (13) 已知数列 $\{a_n\}$ 满足 $a_{n+1} = \frac{a_n}{2a_n+1}$, $n \in \mathbb{N}^*$, 若 $a_3 = \frac{1}{7}$, 则 $a_1 = \underline{\hspace{1cm}}$.
- (14)已知点 $M\left(-1,2,0
 ight)$,平面lpha过 $A\left(1,0,1
 ight)$, $B\left(1,1,0
 ight)$, $C\left(0,1,1
 ight)$ 三点,则点M到平面lpha的距离为
- (15) 1970 年 4 月我国成功发射了第一颗人造地球卫星"东方红一号",这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为 439km,远地点(离地面最远的点)距地面的高度约为 2384km,且地心、近地点、远地点三点在同一直线上,地球半径约为 6371km,则卫星运行轨道是上任意两点间的距离的最大值为 km.
- (16) 如图,在棱长都为 1 的平行六面体 $ABCD A_1B_1C_1D_1$ 中, \overrightarrow{AB} , \overrightarrow{AD} , $\overrightarrow{AA_1}$ 两两夹角均为 $\frac{\pi}{3}$,则 $\overrightarrow{AC_1} \cdot \overrightarrow{BD} = ______$; 请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线 AC_1 垂直.这三个顶点可以是

三、解答题: 共 5 小题, 共 46 分。解答应写出文字说明, 演算步骤或证明过程。

(17) (本小题 8 分)

已知圆 C 的方程为 $x^2 + y^2 - 2x - 2y - 23 = 0$.

(I) 求圆C的圆心及半径;

(II) 是否存在直线l满足: 经过点A(2,-1),且_______ ? 如果存在,求出直线l的方程: 如果不存在,请说明理由.

从下列三个条件中任选一个补充在上面问题中并作答:

条件①:被圆C所截得的弦长最长;

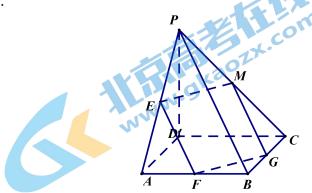
条件②:被圆C所截得的弦长最短;

条件③:被圆C所截得的弦长为8.

注:如果选择多个条件分别作答,按第一个解答计分.

(18) (本小题 9 分)

某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了 10 米高度. 若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的 75%.


- (1) 在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?
- (II) 这个飞机模型上升的最大高度能超过 50 米吗?如果能,求出从第几分钟开始高度超过 50 米;如果不能,请说明理由.

(19) (本小题 10分)

如图,四棱锥 P-ABCD 中,底面 ABCD 为正方形,PD 上底面 ABCD,PD=AD=2,点 E,F,G 分别为 PA,AB,BC 的中点,平面 EFGM \cap 棱 PC=M .

- (I) 试确定 $\frac{PM}{PC}$ 的值,并证明你的结论;
- (II) 求平面 EFGM 与平面 PAD 夹角的余弦值.

(20) (本小题 10 分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 过点 $B(0, \sqrt{2})$,且离心率 $e = \frac{\sqrt{6}}{3}$.

- (I) 求椭圆C的方程:
- (II)设点 F 为椭圆 C 的左焦点,点 T(-3,m),过点 F 作 TF 的垂线交椭圆 C 于点 P,Q,连接 OT 与 PQ 交于点 H.

 - ② 求 $\frac{|PH|}{|HO|}$ 的值.

(21) (本小题 9 分)

设等差数列 $\{a_n\}$ 的各项均为整数,且满足对任意正整数n,总存在正整数m,使得 $a_1+a_2+\cdots+a_n=a_m$,则称这样的数列 $\{a_n\}$ 具有性质P.

- (I) 若数列 $\{a_n\}$ 的通项公式为 $a_n=2n$,数列 $\{a_n\}$ 是否具有性质P? 并说明理由;
- (II) 若 $a_1 = 3$, 求出具有性质P的数列 $\{a_n\}$ 公差的所有可能值;
- (III) 对于给定的 a_1 ,具有性质P的数列 $\left\{a_n\right\}$ 是有限个,还是可以无穷多个?(直接写出结论)

东城区 2021-2022 学年度第一学期期末统一检测

高二数学参考答案及评分标准

2022. 1

一、选择题(共10小题,每小题3分,共3

- (1) A
- (2) B
- (3) C
- (4) D
- 5) B

- (6) C
- (7) D
- (8) A
- (9) B
- (10) C

二、填空题(共6小题,每小题4分,共24分)

(12)
$$x^2 - \frac{y^2}{3} = 1$$
 $y = \pm \sqrt{3}x$ (答案不唯一)

$$(13) \frac{1}{3}$$

(14)
$$\frac{\sqrt{3}}{3}$$

(16)
$$0$$
 点 $A_{\!\scriptscriptstyle 1},B,D$ 或点 $C,B_{\!\scriptscriptstyle 1},D_{\!\scriptscriptstyle 1}$ (填出其中一组即可)

三、解答题(共5小题,共46分)

(17) (共8分)

解: (I) 由圆的方程整理可得 $(x-1)^2 + (y-1)^2 = 25$,

.....4 ታ

所以圆心为(1,1),半径为5. ... (II) 选择条件①:若直线l被圆C所截得的弦长最长,则直线l应过圆心.

又
$$k_{CA} = -2$$
,所以 $k_l = \frac{1}{2}$.

故直线
$$l$$
方程为 $y = \frac{1}{2}x - 2$.

.....8 分

(18) (共9分)

解: (I) 由题意,飞机模型每分钟上升的高度构成 $a_1 = 10$,公比 $q = \frac{3}{4}$ 的等比数列

则
$$a_3 = 10 \times (\frac{3}{4})^2 = \frac{45}{8}$$
 米.

即飞机模型在第三分钟内上升的高度是 45 8 米

.....5 分

(II) 不能超过 50米.

.....6 分

依題意可得
$$S_n = \frac{10[1 - (\frac{3}{4})^n]}{1 - \frac{3}{4}} = 40[1 - (\frac{3}{4})^n] < 50$$

所以这个飞机模型上升的最大高度不能超过50米.

......9 分

解: (I)
$$\frac{PM}{PC} = \frac{1}{2}$$
.

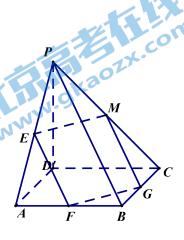
分

证明如下:

在 \triangle APB 中,因为点 E,F 分别为 PA,AB 的中点,所以 $EF /\!\!/ PB$

又EF 文平面PBC, PB 二平面PBC,

所以 EF //平面 PBC.


因为 $EF \subset_{\operatorname{Pin}}EFG$,平面 $EFG \cap_{\operatorname{Pin}}PBC = GM$,

所以 EF // GM.

所以PB//GM.

在 $\triangle PBC$ 中,因为点G为BC的中点,

所以点
$$M$$
为 PC 的中点,即 $\frac{PM}{PC} = \frac{1}{2}$

.....5 分

(Π) 因为底面 ABCD 为正方形,所以 $AD \perp CD$.

因为PD上底面ABCD,

所以 $PD \perp AD$, $PD \perp CD$.

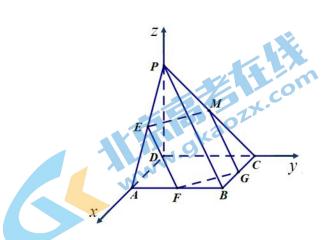
如图,建立空间直角坐标系 D-xyz,则 D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), P(0,0,2).

因为E,F,G分别为PA,AB,BC的中点,

所以E(1,0,1),F(2,1,0),G(1,2,0).

所以
$$\overrightarrow{EF} = (1,1,-1)$$
, $\overrightarrow{FG} = (-1,1,0)$.

设平面 EFGM 的法向量为 $\mathbf{n} = (x, y, z)$,则


$$\begin{cases} \mathbf{n} \cdot \overrightarrow{EF} = 0, \\ \mathbf{n} \cdot \overrightarrow{FG} = 0, \\ \exists \mathbf{I} \end{cases} \begin{cases} x + y - z = 0, \\ -x + y = 0. \end{cases}$$

令
$$x = 1, y = 1, z = 2$$
, 于是 $n = (1,1,2)$.

又因为平面 PAD 的法向量为 m = (0,1,0),

所以
$$\cos \langle m, n \rangle = \frac{m \cdot n}{|m| \cdot |n|} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}$$

所以平面 EFGM 与平面 PAD 夹角的余弦值为 $\frac{\sqrt{6}}{6}$

.....10 分

(20) (共10分)

解:(I)由题意得
$$\begin{cases} b = \sqrt{2}, \\ \frac{c}{a} = \frac{\sqrt{6}}{3}, \\ a^2 = b^2 + c^2 \end{cases}$$

解得 $a^2 = 6$, $b^2 = 2$.

所以椭圆 C 的方程为 $\frac{x^2}{6} + \frac{y^2}{2} = 1$.

NWW.9kaoZ

(II) ① 当 $m = \sqrt{2}$ 时,直线TF的斜率 $k_{TF} = -\sqrt{2}$,

则 TF 的垂线 PQ 的方程为 $y = \frac{\sqrt{2}}{2}(x+2)$.

由
$$\begin{cases} y = \frac{\sqrt{2}}{2}(x+2), \\ \frac{x^2}{6} + \frac{y^2}{2} = 1 \end{cases}$$
 得 $5x^2 + 12x = 0$,

解得 $x_1 = 0, x_2 = -\frac{12}{5}$.

② 由 T(-3,m), F(-2,0), 显然斜率存在, $k_{TF}=-m$, 当 m=0 时, $\frac{|PH|}{|HQ|}=1$.

当 $m \neq 0$ 时,直线PQ过点F且与直线TF垂直,则直线PQ方程为 $y = \frac{1}{m}(x+2)$.

显然 $\Delta > 0$.

设
$$P(x_1,y_1)$$
, $Q(x_2,y_2)$,则

$$x_1 + x_2 = -\frac{12}{m^2 + 3}$$
, $x_1 x_2 = \frac{12 - 6m^2}{m^2 + 3}$.

则
$$P,Q$$
 中点 $x = \frac{x_1 + x_2}{2} = -\frac{6}{m^2 + 3}$.

直线 OT 的方程为 $y = -\frac{m}{3}x$,

由
$$\begin{cases} y = \frac{1}{m}(x+2), \\ y = -\frac{m}{3}x \end{cases}$$
 得 $x_H = -\frac{6}{m^2 + 3}$. 所以 $\frac{|PH|}{|HQ|} = 1$.

综上
$$\frac{|PH|}{|HQ|}$$
的值为1.

.....10 分

(21) (共9分)

解: (I) 由于 a_n =2n ,对任意正整数 n , $a_1+a_2+\cdots+a_n=2\times(1+2+3+\cdots+n)$,

(II)设 $\left\{a_{n}\right\}$ 的公差为d. 由条件知 $a_{1}+a_{2}=a_{k}(k\in\mathbf{N}^{*})$,

则有
$$2a_1 + d = a_1 + (k-1)d$$
, 即 $(k-2)d = a_1$,

因此必有
$$k \neq 2$$
,且 $d = \frac{a_1}{k-2} = \frac{3}{k-2}$.

这样就有 $a_n = a_1 + (n-1)d = a_1 + \frac{n-1}{k-2}a_1 = 3 + \frac{n-1}{k-2} \times 3$,

而此时对任意正整数n,

$$a_1 + a_2 + \dots + a_n = na_1 + \frac{n(n-1)}{2}d = a_1 + \left[(n-1)(k-2) + \frac{n(n-1)}{2} \right]d$$

因此,只要 $d = \frac{3}{k-2}$ 为整数,那么 $a_1 + \left[(n-1)(k-2) + \frac{n(n-1)}{2} \right] d$ 为 $\{a_n\}$ 中的一项.

易知 k-2 可取 $\pm 1,3$ 这 3 个值,对应得到 3 个满足条件的等差数

北京高一高二高三期末试题下载

北京高考资讯整理了【**2022 年 1 月北京各区各年级期末试题&答案汇总**】专题,及时更新最新试题及答案。

通过【**北京高考资讯】公众号**,**对话框回复【期末**】或者**底部栏目<试题下载→期末试题>**, 进入汇总专题,查看并下载电子版试题及答案!

