北京市第八十中学 2020~2021 学年度第一学期期中考试

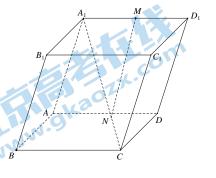
高二数学试卷2020.11

(考试时间: 120 分钟 总分: 150 分)

- -、选择题(本大题共 12 小题,每小题 4 分,共 48 分,在 $\overline{9}$ 分。 $\overline{1}$ 为。 $\overline{1}$ 为。 $\overline{1}$ 为。 $\overline{1}$ 一项是符合题目要求的.请把答案填在答题卡中相应的位置上)
- 1. 在空间直角坐标系中,已知点 A(1,-2,3), B(3,2,-5) ,则线段 AB 的中点坐标为

- A. (2,0,-1) B. (-2,0,1) C. (2,0,-2) D. (-1,-2,4)
- 2. 直线 $\sqrt{3}x y + a = 0$ ($a \in \mathbb{R}$) 的倾斜角为
- A. 30° B. 60° C. 120° D. 150°
- 3. 若原点在直线l上的射影是P(-2,1),则直线l的方程为
- A. x+2y=0 B. 2x+y+3=0 C. 2x-y+5=0 D. 2x-y+3=0
- 4. 圆 C_1 : $x^2 + y^2 + 2x = 0$ 与圆 C_2 : $x^2 + y^2 4x + 8y + 4 = 0$ 的位置关系是
 - A. 相交
- B. 外切 C. 内切
- D. 相离
- 5. 若直线 $l_1:(a-1)x+2y+1=0$ 与直线 $l_2:x+ay+3=0$ 平行,则实数a等于
- A. -1 B. 2 C. 0或-2 D. -1或2
- 6. 如图,在平行六面体 $ABCD A_iB_iC_iD_i$ 中, $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $\overrightarrow{AA_i} = c$, M

是 A_1D_1 的中点,点 N 是 CA_1 上的点,且 $\frac{CN}{NA} = \frac{1}{4}$,用 a,b,c 表示向量 \overrightarrow{MN} 的结



果是

A.
$$\frac{1}{2}a + b + c$$

B.
$$\frac{1}{5}a + \frac{1}{5}b + \frac{4}{5}c$$

C.
$$\frac{1}{5}a - \frac{3}{10}b - \frac{1}{5}c$$

A.
$$\frac{1}{2}a + b + c$$
 B. $\frac{1}{5}a + \frac{1}{5}b + \frac{4}{5}c$ C. $\frac{1}{5}a - \frac{3}{10}b - \frac{1}{5}c$ D. $\frac{4}{5}a + \frac{3}{10}b - \frac{4}{5}c$

- 7. 直三棱柱 $ABC-A_1B_1C_1$ 中, $\angle BCA=90^\circ$,M,N分别是 A_1B_1,A_1C_1 的中点, $BC=CA=CC_1$,则异 面直线BM与AN所成的角的余弦值为
- C. $\frac{\sqrt{30}}{10}$ D. $\frac{\sqrt{2}}{2}$
- A. $\frac{1}{10}$ B. $\frac{2}{5}$ 8. 已知椭圆 $C: x^2 + \frac{y^2}{2} = 1$ 的焦点分别为 F_1, F_2, P 是椭圆C上的动点,则下列结论正确的是
 - A. $|PF_1| + |PF_2| = 2$
- B. ΔPF_1F_2 面积的最大值是 $\sqrt{2}$

C. 椭圆
$$C$$
 的离心率为 $\frac{\sqrt{6}}{2}$

C. 椭圆
$$C$$
 的离心率为 $\frac{\sqrt{6}}{2}$ D. 以线段 F_1F_2 为直径的圆与直线 $x+y-\sqrt{2}=0$ 相切

- 9. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点为 F_1, F_2 ,离心率为 $\frac{\sqrt{3}}{3}$,过 F_2 的直线l交C于A, B两
- 点. 若 ΔAF_1B 的周长为 $4\sqrt{3}$,则椭圆C的方程为

A.
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$

B.
$$\frac{x^2}{3} + y^2 = 1$$

C.
$$\frac{x^2}{12} + \frac{y^2}{8} = \frac{1}{12}$$

A.
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$
 B. $\frac{x^2}{3} + y^2 = 1$ C. $\frac{x^2}{12} + \frac{y^2}{8} = 1$ D. $\frac{x^2}{12} + \frac{y^2}{4} = 1$

10. 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 $(x-2)^2+y^2=2$ 上,则 $\triangle ABP$ 面积的 取值范围是

C.
$$[\sqrt{2}, 3\sqrt{2}]$$

C.
$$[\sqrt{2}, 3\sqrt{2}]$$
 D. $[2\sqrt{2}, 3\sqrt{2}]$

11. 已知函数 $f(x) = \log_3(x+2)$,若 a > b > c > 0,则 $\frac{f(a)}{a}$, $\frac{f(b)}{b}$, $\frac{f(c)}{c}$ 的大小关系为

A.
$$\frac{f(a)}{a} < \frac{f(b)}{b} < \frac{f(c)}{c}$$
 B.
$$\frac{f(c)}{c} < \frac{f(b)}{b} < \frac{f(a)}{a}$$

B.
$$\frac{f(c)}{c} < \frac{f(b)}{b} < \frac{f(a)}{a}$$

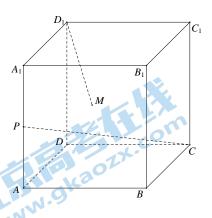
C.
$$\frac{f(c)}{c} < \frac{f(a)}{a} < \frac{f(b)}{b}$$

C.
$$\frac{f(c)}{c} < \frac{f(a)}{a} < \frac{f(b)}{b}$$
 D. $\frac{f(a)}{a} < \frac{f(c)}{c} < \frac{f(b)}{b}$

12. 如图,已知正方体 $ABCD-A_iB_iC_iD_i$ 的棱长为4,P是 AA_i 的中点,点M

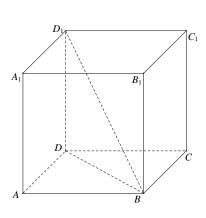
在侧面 $AA_{l}B_{l}B$ (含边界) 内,若 $D_{l}M \perp CP$,则 ΔBCM 面积的最小值为

B. 4 C. $8\sqrt{2}$ D. $\frac{8\sqrt{5}}{5}$



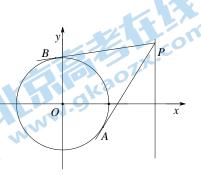
二、填空题(本大题共6小题,每小题5分,共30分,请把答案填在答题

- 13. 已知曲线 $x^2 + my 3 = 0$ 过点 (1,1) ,则 m = .
- 14. 已知点 A(0,2),点 B 是直线 x+y=0 上的动点,则 |AB| 的最小值是_____.
- 15. 若圆 $C: x^2 + (y+1)^2 = 1$ 被直线l: x + y + a = 0所截得的弦长为 $\sqrt{2}$,则 实数a的值是
- 16. 在直四棱柱 $ABCD A_lB_lC_lD_l$ 中,底面 ABCD 是边长为1的正方形, D_lB 与平面 ABCD 所成的角为 60° ,则棱 AA_1 的长为_____; 点 C_1 到平面 BDD_1 的 距离为 .



17. 已知点 A(-1,0),点 B 是圆 $C:(x-1)^2+y^2=16$ 上一动点,线段 AB 的垂直平分线交 BC 于 P ,则动点 P 的轨迹方程为_____.

18. 已知圆O的圆心为坐标原点,且与直线 $x+y+4\sqrt{2}=0$ 相切,则圆O的方程为_____. 若点P在直线 x=8上,过点P引圆O的两条切线PA,PB,切点分别为A,B,如图所示,则直线 AB 恒过定点_____.



三、解答题 (本大题共 5 小题, 共 72 分. 解答应写出必要的文字说明、证明过程或演算步骤. 请把答案填在答题卡中相应的位置上)

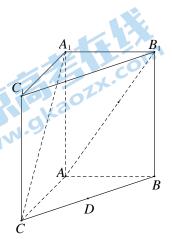
19. (本小题满分 12 分) 已知 $\triangle ABC$ 的顶点 C(4,3),边 AC 上的高 BH 所在直线方程为 x-2y-5=0,点 (2,-1) 是边 AB 的中点.

- (1) 求边 AC 所在直线的方程;
- (2) 求点B的坐标.

20. (本小题满分 15 分) 如图,在直三棱柱 $ABC-A_1B_1C_1$ 中, $AA_1=AC=4$,

AB = 3, BC = 5, 点 D 是线段 BC 的中点.

- (1) 求证: $AB \perp A_1C$;
- (2) 试求二面角 $D-CA_{l}-A$ 的余弦值;
- (3) 求点 B_1 到平面 A_1CD 的距离.



- 21. (本小题满分 13 分) 已知圆 $C: x^2 + y^2 2x 4y + m = 0$.
- (1) 求圆C的圆心坐标及实数m的取值范围;
- (2) 若圆C与直线x+2y-4=0相交于M,N两点,且 $OM \perp ON$ (O为坐标原点),求m的值.

22. (本小题满分 16 分) 如图1,在 $R \triangle ABC$ 中, $\angle C = 90^\circ$, D, E 分别为 AC, AB 的中点,点 F 为线段 CE 上的一点. 将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置,使 $AF \triangle DC$,如图 2 .

- (1) 求证: *DE* // 平面 A₁CB;
- (2) 求证: $A_1F \perp BE$;
- (3) 线段 A_1B 上是否存在点 Q,使面 A_1CB \bot 平面 DEQ? 说明理由.

23. (本小题满分 16 分) 阿基米德(公元前 287 年-公元前 212 年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积除以圆周率 π 等于椭圆的长半轴长与短半轴长的乘积. 在平面直角坐标系 Oxy 中,椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的面积为 $2\sqrt{3}\pi$,两焦点与短轴的一个项点构成等边三角形. 过点 (1,0) 的直线 l 与椭圆 C 交于不同的两点 A,B.

- (1) 求椭圆C的标准方程;
- (2) 设椭圆C的左、右顶点分别为P,Q,直线PA与直线x=4交于点F,试证明B,Q,F三点共线。
- (3) 求 $\triangle AOB$ 面积的最大值.

关注北京高考在线官方微信:北京高考资讯(ID:bj-gaokao), 获取更多试题资料及排名分析信息。

一、选择题

题号	1	2	3	4	5	6	7	8	9	10 11	.12
答案	A	В	С	В	D	D	C	D	A	A	D

二、填空题

题号	13	14	15	16	17	18
答案	2	$\sqrt{2}$	0或2	$\sqrt{6}$; $\frac{\sqrt{2}}{2}$	$\frac{x^2}{4} + \frac{y^2}{3} = 1$	$x^2 + y^2 = 16;(2,0)$

(注:两个空的,前2后3)

三、解答题(本大题共 5 小题, 共 60 分. 解答应写出必要的文字说明、证明过程或演算步骤. 请把答案填在答题卡中相应的位置上)

19. (本小题满分 12 分) 已知 $\triangle ABC$ 的顶点 C(4,3), 边 AC 上的高 BH 所在直线方程为 x-2y-5=0,

点(2,-1)是边AB的中点.

- (1) 求边 AC 所在直线的方程;
- (2) 求点 B 的坐标.

解: (1) 因为边AC上的高BH所在直线方程为x-2y-5=0,

所以边AC所在直线的斜率为-2.

所以边 AC 所在直线的方程为 v-3=-2(x-4).

即边AC所在直线的方程为2x+y-11=0.

…5分

(2) 设点 B 的坐标为 (x_0, y_0) .

因为边AC上的高BH所在直线方程为x-2y-5=0,所以 $x_0-2y_0-5=0$.

又因为点(2,-1)是边AB的中点,所以点A的坐标为 $(4-x_0,-2-y_0)$.

又因为边AC所在直线的方程为2x+y-11=0,

所以 $2(4-x_0)-(2+y_0)-11=0$. 即 $2x_0+y_0+5=0$.

曲
$$\begin{cases} 2x_0 + y_0 + 5 = 0, \\ x_0 - 2y_0 - 5 = 0 \end{cases}$$
 得
$$\begin{cases} x_0 = -1, \\ y_0 = -3. \end{cases}$$

所以点B的坐标为(-1,-3).

…12 分

20. (本小题满分 15 分) 如图,在直三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = AC = 4$, AB = 3 , BC = 5 , 点 AB = 3 , AB = 3

- (1) 求证: $AB \perp A_1C$;
- (2) 试求二面角 $D-CA_1-A$ 的余弦值;
- (3) 求点 B_1 到平面 A_1CD 的距离.

证明: (1) 在 $\triangle ABC$ 中, 因为 AC = 4 , AB = 3 , BC = 5 ,

所以 $AB \perp AC$.

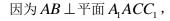
在直三棱柱 $ABC - A_1B_1C_1$ 中,

所以 AA_1 上平面ABC. 所以 AA_1 上AB.

又因为 $AA_1 \cap AC = A$,所以 $AB \perp \text{平面 } A_1ACC_1$.

所以 $AB \perp A_1C$.

…5分



所以平面AAC的一个法向量是 $\overrightarrow{AB} = (0,3,0)$.

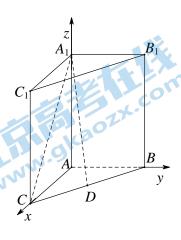
设 $\mathbf{n} = (x, y, z)$ 是平面 $DA_{i}C$ 的一个法向量.

由
$$\begin{cases} \mathbf{n} \cdot \overrightarrow{CD} = 0, \\ \mathbf{n} \cdot \overrightarrow{CA_1} = 0 \end{cases}$$
 得
$$\begin{cases} -2x + \frac{3}{2}y = 0, \\ -4x + 4z = 0. \end{cases}$$
 解得
$$\begin{cases} y = \frac{4}{3}x, \\ z = x. \end{cases}$$

 $\Leftrightarrow x = 3$, \emptyset n = (3,4,3).

设二面角
$$D - CA_1 - A$$
 的夹角为 θ ,则 $\left|\cos\theta\right| = \left|\cos\left\langle \overrightarrow{AB}, n\right\rangle\right| = \frac{\left|\overrightarrow{AB} \cdot n\right|}{\left|\overrightarrow{AB}\right| \cdot |n|} = \frac{12}{3 \times \sqrt{34}} = \frac{2\sqrt{34}}{17}$.

由图可知,二面角 $D-CA_l-A$ 为锐角,所以二面角 $D-CA_l-A$ 的余弦值为 $\frac{2\sqrt{34}}{17}$. …12 分



(3) 设点 B_1 到平面 A_1CD 的距离为 d. 因为 $\overrightarrow{A_1B_1} = (0,3,0)$,

所以
$$d = \left| \frac{\overline{A_1} \overline{B_1} \cdot \mathbf{n}}{|\mathbf{n}|} \right| = \frac{12}{\sqrt{34}} = \frac{6\sqrt{34}}{17}$$
.

所以点
$$B_1$$
 到平面 A_1CD 的距离为 $\frac{6\sqrt{34}}{17}$.

www.9kaoza

- 21. (本小题满分 13 分) 已知圆 $C: x^2 + y^2 2x 4y + m = 0$.
- (1) 求圆C的圆心坐标及实数m的取值范围;
- (2) 若圆C与直线x+2y-4=0相交于M,N两点,且 $OM \perp ON$ (O为坐标原点),求m的值.
- 解: (1) 因为圆C的方程为 $x^2 + y^2 2x 4y + m = 0$,

所以圆
$$C:(x-1)^2+(y-2)^2=5-m$$
.

所以圆C的圆心坐标为(1,2). 实数m的取值范围为 $(-\infty,5)$. …5分

(2) $\partial M(x_1, y_1), N(x_2, y_2)$.

因为圆C与直线x+2y-4=0相交于M,N两点,

所以
$$\Delta = (-8)^2 - 4 \times 5 \times (4m - 16) > 0$$
.

所以
$$m < \frac{24}{5}$$
.

所以
$$x_1 + x_2 = \frac{8}{5}, x_1 \cdot x_2 = \frac{4m - 16}{5}$$
.

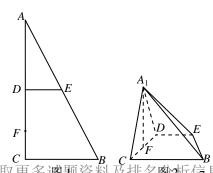
又因为 $OM \perp ON$,

所以
$$x_1 x_2 + y_1 y_2 = x_1 x_2 + \frac{4 - x_1}{2} \cdot \frac{4 - x_2}{2} = \frac{5}{4} x_1 x_2 - (x_1 + x_2) + 4$$

$$= \frac{5}{4} \times \frac{4m - 16}{5} - \frac{8}{5} + 4 = m - \frac{8}{5} = 0.$$

解得
$$m = \frac{8}{5} \dots 13$$
分

22. (本小题满分 16 分) 如图1,在 $Rt\triangle ABC$ 中, $\angle C = 90^\circ$,D,E 分别为 AC,AB 的中点,点F 为线段 CD 上的一点.将 $\triangle ADE$ 沿 DE 折起到 $\triangle A_1DE$ 的位置,使 $A_1F \perp CD$,如图 2.



关注北京高考在线官方微信:北京高考资讯(ID:bj-gaokao), 获取更多调题资料及排名**购**析信息

- (1) 求证: DE// 平面 A_1CB ;
- (2) 求证: $A_1F \perp BE$;
- (3) 线段 A_1B 上是否存在点Q,使面 A_1CB \bot 平面DEQ? 说明理由.

解: (1) 因为D, E分别为AC, AB的中点,

所以 DE // BC.

所以DE//平面 A_1CB .

…4分

(2) 由己知得 $AC \perp BC$ 且DE//BC,

所以 DE ⊥ AC .

所以 $DE \perp A_1D$, $DE \perp CD$.

所以DE 上平面 A_1DC .

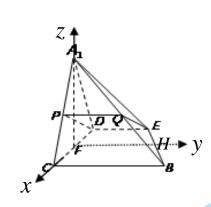
而 A_1F \subset 平面 A_1DC ,

所以 $DE \perp A_1F$.

又因为 $A_1F \perp CD$,

所以 A_1F 上平面BCDE.

所以 $A_1F \perp BE$. …9分



WWW.9kaozy

(3)如图,作 FH // BC 交 BE 于 H ,则 $FH \perp CD$. 由(2)可知, $A_1F \perp$ 平面 BCDE,所以 $A_1F \perp BE$, $A_1F \perp FH$. 建立空间直角坐标系 F-xyz .

(法 1) 设
$$BC = 2b$$
, $FC = n$, $DF = m$, $A_1F = c$, 则 $DE = b$.

所以 $A_1(0,0,c)$, B(n,2b,0), D(-m,0,0), E(-m,b,0).

假设在线段 A_1B 上存在点 Q,且 $\frac{A_1Q}{A_1B}=\lambda(\lambda\in[0,1])$,使得平面 A_1CB \bot 平面 DEQ .

因为
$$\frac{A_1Q}{A_1B} = \lambda$$
,所以 $\overline{A_1Q} = \lambda \overline{A_1B}$.

所以
$$\overrightarrow{DQ} = \overrightarrow{DA_1} + \overrightarrow{A_1Q} = \overrightarrow{DA_1} + \lambda \overrightarrow{A_1B} = (m,0,c) + \lambda(n,2b,-c)$$

$$=(m+\lambda n,2\lambda b,c-\lambda c)$$
.

设n = (x, y, z)是平面DEQ的一个法向量.

由
$$\begin{cases} \boldsymbol{n} \cdot \overrightarrow{DE} = 0, \\ \boldsymbol{n} \cdot \overrightarrow{DQ} = 0 \end{cases}$$
 得
$$\begin{cases} by = 0, \\ (m + \lambda n)x + 2\lambda by + (c - \lambda c)z = 0. \end{cases}$$

解得
$$\begin{cases} y = 0, \\ (m + \lambda n)x + (c - \lambda c)z = 0. \end{cases}$$

$$\Leftrightarrow x = c(\lambda - 1), \quad \emptyset \mathbf{n} = ((\lambda - 1)c, 0, m + \lambda n).$$

设 $\mathbf{m} = (x_0, y_0, z_0)$ 是平面 A_1CB 的一个法向量.

由
$$\begin{cases} \boldsymbol{m} \cdot \overrightarrow{CB} = 0, \\ \boldsymbol{m} \cdot \overrightarrow{CA_1} = 0 \end{cases} = 0, \quad \{ 2by_0 = 0, \\ -nx_0 + cz_0 = 0. \end{cases}$$
解得
$$\begin{cases} y_0 = 0, \\ nx_0 = cz_0. \end{cases}$$

$$\Leftrightarrow x_0 = c$$
, \emptyset $m = (c, 0, n)$.

$$\exists \, \boldsymbol{m} \cdot \boldsymbol{n} = (c, 0, n) \cdot ((\lambda - 1)c, 0, m + \lambda n) = (c^2(\lambda - 1) + n(m + \lambda n) = 0,$$

所以
$$\lambda(c^2+n^2)=c^2-mn$$
.

又因为 $(m+n)^2-c^2=m^2$,所以 $c^2=n^2+2mn$.

所以
$$\lambda = \frac{n^2 + mn}{n^2 + 2mn + n^2} = \frac{1}{2}$$
.

所以当点Q是线段 A_1B 中点时,平面 A_1CB 上平面DEQ . …16分

(法 2) 线段 A_1B 上存在点 Q ,使得平面 A_1CB 上平面 DEQ . 理由如下:

如图,分别取 A_1C , A_1B 的中点P,Q,则PQ//BC.

又因为 DE // BC,

所以 DE // PQ.

所以平面 DEQ 即为平面 DEP.

由(II)知,DE 上平面 A_1DC ,

所以 $DE \perp A_1C$.

又因为P是等腰三角形 DA_1C 底边 A_1C 的中点,

所以 $A_1C \perp DP$.

所以 A_1C 上平面 DEP.

从而 A_1C 上平面DEQ. 所以面 A_1CB 上平面DEQ.

故线段 A_1B 上存在点Q,使得面 A_1CB \bot 平面DEQ. ····16 分

23. (本小题满分 16 分)阿基米德(公元前 287 年-公元前 212 年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用"逼近法"得到椭圆的面积除以圆周率 π 等于椭圆的长半轴长与短半轴长的乘积。在平面直角坐标系 Oxy 中,椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的面积为 $2\sqrt{3}\pi$,两焦点与短轴的一个

关注北京高考在线官方微信:北京高考资讯(ID:bi-gaokao), 获取更多试题资料及排名分析信息。

顶点构成等边三角形. 过点(1,0)的直线l与椭圆C交于不同的两点A,B.

- (1) 求椭圆C的标准方程;
- (2) 设椭圆C的左、右顶点分别为P,Q,直线PA与直线x=4交于点F,试证明B,Q,F三点共线;
- (3) 求 $\triangle AOB$ 面积的最大值.

解: (1) 由己知得
$$\begin{cases} \pi ab = 2\sqrt{3}\pi, & \text{解得} \\ b^2 + c^2 = 4c^2. \end{cases} \begin{cases} a = 2, \\ b = \sqrt{3}. \end{cases}$$

所以椭圆 C 的标准方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$. …4 分

(2) (i) 当直线
$$l$$
的斜率不存在时,易知 $A(1,\frac{3}{2}), B(1,-\frac{3}{2})$ 或 $A(1,-\frac{3}{2}), B(1,\frac{3}{2})$.

当
$$A(1,\frac{3}{2})$$
, $B(1,-\frac{3}{2})$ 时,直线 PA 的方程为 $y = \frac{1}{2}(x+2)$,所以点 $F(4,3)$.

此时,
$$\overrightarrow{QB} = (-1, -\frac{3}{2}), \overrightarrow{QF} = (2,3)$$
,显然 $B, Q, F =$ 点共线.

同理, 当
$$A(1,-\frac{3}{2})$$
, $B(1,\frac{3}{2})$ 时, B,Q,F 三点共线.

(ii) 当直线l的斜率存在时,显然斜率 $k \neq 0$. 设直线 $l: y = k(x-1), A(x_1, y_1), B(x_2, y_2)$.

由
$$\begin{cases} y = k(x-1), \\ 3x^2 + 4y^2 = 12 \end{cases}$$
 得 (3+4k²)x²-8k²x+(4k²-12) = 0.

显然
$$\Delta > 0$$
 成立. 所以 $x_1 + x_2 = \frac{8k^2}{3 + 4k^2}, x_1 x_2 = \frac{4k^2 - 12}{3 + 4k^2}.$

由题意可知,椭圆C的左、右顶点分别为P(-2,0),Q(2,0).

直线
$$PA$$
 的方程为 $y = \frac{y_1}{x_1 + 2}(x + 2)$.

又因为直线 PA 与直线 x = 4 交于点 F , 所以 $F(4, \frac{6y_1}{x+2})$

所以
$$\overrightarrow{QB} = (x_2 - 2, y_2), \overrightarrow{QF} = (2, \frac{6y_1}{x_1 + 2}).$$

因为
$$(x_2-2)$$
 $\frac{6y_1}{x_1+2} - 2y_2 = \frac{6y_1(x_2-2) - 2y_2(x_1+2)}{x_1+2} = \frac{6k(x_1-1)(x_2-2) - 2k(x_2-1)(x_1+2)}{x_1+2}$

$$= 2k \times \frac{2x_1x_2 - 5(x_1+x_2) + 8}{x_1+2},$$

$$=2k \times \frac{2x_1x_2 - 5(x_1 + x_2) + 8}{x_1 + 2}$$

$$\mathbb{Z} 2x_1x_2 - 5(x_1 + x_2) + 8 = 2 \times \frac{4k^2 - 12}{3 + 4k^2} - 5 \times \frac{8k^2}{3 + 4k^2} + 8 = \frac{8k^2 - 24 - 40k^2 + 24 + 32k^2}{3 + 4k^2} = 0$$

关注北京高考在线官方微信:北京高考资讯(ID:bj-gaokao), 获取更多试题资料及排名分析偏息。

所以
$$(x_2-2)\frac{6y_1}{x_1+2}-2y_2=0$$
.

所以
$$\overrightarrow{QB}//\overrightarrow{QF}$$
.

所以B,Q,F三点共线. …10分

- (3) (i) 当直线l的斜率不存在时,易知|AB|=3,此时 ΔAOB 的面积为 $\frac{1}{2}\times 3\times 1=\frac{3}{2}$
 - (ii) 当直线l的斜率存在时,显然斜率 $k \neq 0$.

所以
$$|AB| = \sqrt{(1+k^2)[(x_1+x_2)^2-4x_1x_2]} = \sqrt{(1+k^2)[(\frac{8k^2}{3+4k^2})^2-4\times\frac{4k^2-12}{3+4k^2}} = 12\times\frac{1+k^2}{3+4k^2}.$$

又因为
$$d_{O\rightarrow l} = \frac{|k|}{\sqrt{k^2 + 1}}$$
,

所以
$$\triangle AOB$$
 的面积 $S = \frac{1}{2}|AB| \cdot d_{O \to l} = \frac{1}{2} \times 12 \times \frac{1+k^2}{3+4k^2} \times \frac{|k|}{\sqrt{k^2+1}}$
$$= 6\sqrt{\frac{(1+k^2)k^2}{(3+4k^2)^2}} \; .$$

$$\Rightarrow 3+4k^2=t$$
, $\emptyset k^2=\frac{t-3}{4}(t>3)$.

所以
$$\frac{(1+k^2)k^2}{(3+4k^2)^2} = \frac{(1+\frac{t-3}{4})\frac{t-3}{4}}{t^2} = \frac{1}{16} \cdot \frac{t^2-2t-3}{t^2} = \frac{1}{16} \left(-\frac{3}{t^2} - \frac{2}{t} + 1\right)$$

$$= \frac{1}{16} \left[-3\left(\frac{1}{t} + \frac{1}{3}\right)^2 + \frac{4}{3}\right].$$

因为
$$t > 3$$
,所以 $0 < \frac{1}{t} < \frac{1}{3}$.所以 $\frac{(1+k^2)k^2}{(3+4k^2)^2} \in (0,\frac{1}{16})$.所以 $\sqrt{\frac{(1+k^2)k^2}{(3+4k^2)^2}} \in (0,\frac{1}{4})$

所以
$$S \in (0, \frac{3}{2})$$
.

综上所述,当直线 $l \perp x$ 轴时, ΔAOB 的面积取得最大值 $\frac{3}{2}$. …16 分

关注北京高考在线官方微信:北京高考资讯(ID:bj-gaokao), 获取更多试题资料及排名分析信息。

关于我们

北京高考资讯是专注于北京新高考政策、新高考选科规划、志愿填报、名校强基计划、学科竞赛、高中生涯规划的超级升学服务平台。总部坐落于北京,旗下拥有北京高考在线网站(www.gaokzx.com)和微信公众平台等媒体矩阵。

目前,北京高考资讯微信公众号拥有30W+活跃用户,用户群体涵盖北京80%以上的重点中学校长、老师、家长及考生,引起众多重点高校的关注。 北京高考在线官方网站:www.gaokzx.com

> 北京高考资讯 (ID: bj-gaokao) 扫码关注获取更多

WWW.9kaozx.

