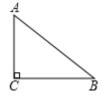
2022 北京清华附中初三一模

数学

注意:本试卷包含I、II两卷。第I卷为选择题,所有答案必须用 2B 铅笔涂在答题卡中相应的位置。第II卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。

一、选择题(本大题共8小题,共16分)

1.如图,在 $Rt\triangle ABC$ 中, $\angle ACB=90^{\circ}$,如果 AC=3,AB=5,那么 $\sin B$ 等于(



B. $\frac{4}{5}$

C. $\frac{3}{4}$

D. $\frac{4}{3}$

a, b, c 在数轴上的对应点的位置如图所示,则正确的结论是()

A. a > b

B.
$$a = b > 0$$

C.
$$ac > 0$$

D.
$$|a| > |c|$$

3.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为"比邻星",它距离太阳系约 4.2 光年.光年是天文学中一种计量天体时空距离的长度单位,1 光年约为 9 500 000 000 000 千米,则"比邻星"距离太阳系约为

A. 4×10¹³千米

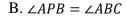
4.点 A (1, y_1), B (3, y_2) 是反比例函数 $y=-\frac{6}{r}$ 图象上的两点,那么 y_1 , y_2 的大小关系是 (

A. $y_1 > y_2$

B.
$$y_1 = y_2$$

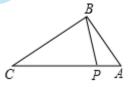
C.
$$y_1 < y_2$$

5.如果 $a^2+3a+1=0$,那么代数式($\frac{a^2+9}{a}+6$)• $\frac{2a^2}{a+3}$ 的值为(


A. 1

B.
$$-1$$

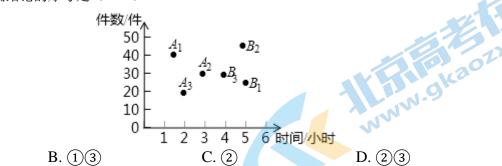
$$D - 2$$


6.如图,点 P在 $\triangle ABC$ 的边 AC上,如果添加一个条件后可以得到 $\triangle ABP$ \hookrightarrow $\triangle ACB$,那么以下添加的条件中,不正确的是()

A. $\angle ABP = \angle C$

C.
$$AB^2 = AP \cdot AC$$

D.
$$\frac{AB}{BP} = \frac{AC}{CB}$$



7.三名快递员某天的工作情况如图所示,其中点 A_1 , A_2 , A_3 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点 B_1 , B_2 , B_3 的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数. 有如下三个结论:

- ①上午派送快递所用时间最短的是甲;
- ②下午派送快递件数最多的是丙;

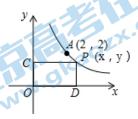
③在这一天中派送快递总件数最多的是乙.

上述结论中,所有正确结论的序号是()

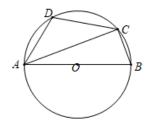
8.《西游记》的故事家喻户晓,特别是书中的孙悟空嫉恶如仇斩妖除魔大快人心.在一次降妖过程中,孙悟空念动咒语将一片树叶放大后射向妖魔.假如这个过程可以看成是在平面直角坐标系中的一次无旋转的变换,设变化前树叶尖部点 A 坐标为(a, b),在咒语中变化后得到对应点 A '为(300a+200,300b-100).则变化后树叶的面积变为原来的

()

A. (1)(2)


- A. 300倍
- B. 3000倍
- C. 9000倍
- D. 90000倍

- 二、填空题 (本大题共8小题,共16分)
- 9. \overline{x} √x − 3 在实数范围内有意义,则 x 的取值范围是_____.
- 10.分解因式: ax²-25a=____.


11.如图,在 $\triangle ABC$ 中,D,E两点分别在AB,AC边上,DE//BC,如果 $\frac{AD}{DB} = \frac{3}{2}$,AC = 10,那么 $EC = _____$.

12.如图,在平面直角坐标系 xOy 中,第一象限内的点 P(x, y) 与点 A(2, 2) 在同一个反比例函数的图象上, $PC \perp y$ 轴于点 C, $PD \perp x$ 轴于点 D,那么矩形 ODPC 的面积等于_____.

13.如图, AB 是⊙O 的直径, C、D 为⊙O上的点, 若 $\angle CAB=20^{\circ}$, 则 $\angle D=$ ____°.

14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.

	抛掷次数	50	100	200	500	1000	2000	3000	4000	5000
	"正面向上"的次数	19	38	68	168	349	707	1069	1400	1747
	"正面向上"的频率	0.3800	0.3800	0.3400	0.3360	0.3490	0.3535	0.3563	0.3500	0.3494

下面有三个推断:

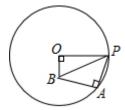
- ①在用频率估计概率时,用实验 5000 次时的频率 0.3494 一定比用实验 4000 次时的频率 0.3500 更准确;
- ②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,"正面向上"的频率有更大的可能仍会在

0.35 附近摆动;

③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.

其中正确的是 .

15.2017年9月热播的专题片《辉煌中国--圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞"厉害了,我的国!"片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图 1 所示)主桥的主跨长度在世界斜拉桥中排在前列。在图 2 的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨 BD 的中点为 E,最长的斜拉索 CE 长 577m,记 CE 与大桥主梁所夹的锐角 $\angle CED$ 为 α ,那么用 CE 的长和 α 的三角函数表示主跨 BD 长的表达式应为 BD=______(m).



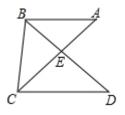
斜拉索 B 索塔 E D

图1 苏通长江大桥

图2 苏通长江大桥主桥示意图

16.如图, $\odot O$ 的半径为 3,A,P 两点在 $\odot O$ 上,点 B 在 $\odot O$ 内, $\tan \angle APB=\frac{4}{3}$, $AB \bot AP$. 如果 $OB \bot OP$,那么 OB 的长为______.

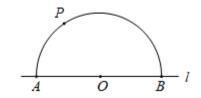
Www.gkaozx.


三、解答题(本大题共12小题,共88分)

17.计算 $|-5|+\sqrt{12}-2\sin 60^{\circ}-(2019-\pi)^{-0}$

18.已知 x=1 是关于 x 的方程 $x^2-mx-2m^2=0$ 的一个根,求 m(2m+1) 的值.

19.如图, AB // CD, AC 与 BD 的交点为 E, ∠ABE=∠ACB.


- (1) 求证: △*ABE*∽△*ACB*;
- (2) 如果 AB=6, AE=4, 求 AC, CD 的长.

20.下面是小明设计的"过直线外一点作己知直线的平行线"的尺规作图过程.

已知: 直线 l 及直线 l 外一点 P.

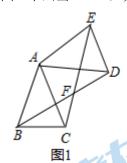
求作: 直线 PO, 使 PO//l.

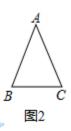
作法:如图,

- WWW.9kaoZX.c ①在直线 l上取一点 O, 以点 O 为圆心, OP 长为半径画半圆, 交直线 l 于 A, B 两点;
- ②连接 PA, 以 B 为圆心, AP 长为半径画弧, 交半圆于点 Q;
- ③作直线 PQ.

所以直线 PQ 就是所求作的直线.

根据小明设计的尺规作图过程,

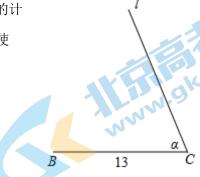

- (1) 使用直尺和圆规,补全图形; (保留作图痕迹)
- (2) 完成下面的证明.


证明: 连接 PB, OB.

- $\therefore PA = QB$,
- $\therefore \widehat{PA} = \underline{\qquad}$.
- ∴ ∠*PBA*=∠*QPB* (_____) (填推理的依据)
- ____) (填推理的依据).
- 21.关于 x 的一元二次方程 x^2 (2k-1) $x+k^2$ -1=0, 其中 k<0.
- (1) 求证: 方程有两个不相等的实数根;
- (2) 当 k=-1 时,求该方程的根.

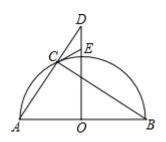
22.在 $\triangle ABC$ 中,AB=AC=2, $\angle BAC=45^{\circ}$. 将 $\triangle ABC$ 绕点 A 逆时针旋转 α 度($0<\alpha<180$)得到 $\triangle ADE$,B,C 两 www.9kaozx.co 的对应点分别为点 D, E, BD, CE 所在直线交于点 F.

- (1) 当 $\triangle ABC$ 旋转到图 1 位置时, $\angle CAD=$ _____(用 α 的代数式表示), $\angle BFC$ 的度数为
- (2) 当 α =45 时,在图 2 中画出 $\triangle ADE$,并求此时点 A 到直线 BE 的距离.



23.在平面直角坐标系 xOy 中,直线 l: y=x+b 与 x 轴交于点 A (-2, 0) ,与 y 轴交于点 B. 双曲线 $y=\frac{k}{x}$ 与直线 l 交于 P, Q两点, 其中点 P的纵坐标大于点 Q的纵坐标

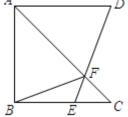
- (1) 求点 B 的坐标;
- (2) 当点 P 的横坐标为 2 时, 求 k 的值;
- (3) 连接 PO,记 $\triangle POB$ 的面积为 S. 若 $\frac{1}{2}$ < S < 1,结合函数图象,直接写出 k 的取值范围.


24.如图,线段 BC 长为 13,以 C 为顶点,CB 为一边的 $\angle \alpha$ 满足 $\cos \alpha = \frac{5}{13}$. 锐角 $\triangle ABC$ 的顶点 A 落在 $\angle \alpha$ 的另一边 l

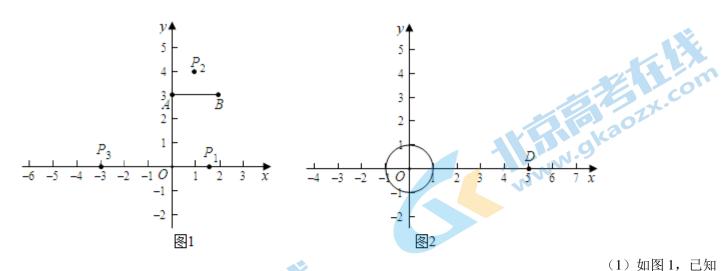
上,且满足 $\sin A = \frac{4}{5}$. 求 $\triangle ABC$ 的高 BD 及 AB 边的长,并结合你的计算过程画出高 BD 及 AB 边. (图中提供的单位长度供补全图形使用)

25.如图,AB 是半圆的直径,过圆心 O 作 AB 的垂线,与弦 AC 的延长线交于点 D,点 E 在 OD 上, $\angle DCE = \angle B$.

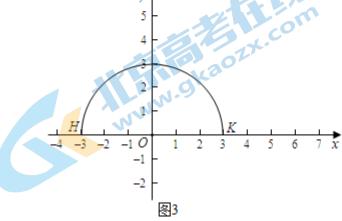
- (1) 求证: CE 是半圆的切线;
- (2) 若 CD=10, $\tan B=\frac{2}{3}$, 求半圆的半径.



26.在平面直角坐标系 xOy 中,已知抛物线 $y=x^2-mx+n$.


- (1) 当 m=2 时,
- ①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;
- ②若点A(-2, y_1), B(x_2 , y_2)都在抛物线上,且 $y_2>y_1$,则 x_2 的取值范围是_____;
- (2) 已知点 P(-1, 2) ,将点 P向右平移 4个单位长度,得到点 Q. 当 n=3 时,若抛物线与线段 PQ恰有一个公共点,结合函数图象,求 m 的取值范围.

27.如图,在 $\triangle ABC$ 中, $\angle ABC$ =90°,BA=BC. 将线段 AB 绕点 A 逆时针旋转 90°得到线段 AD,E 是边 BC 上的一动点,连接 DE 交 AC 于点 F,连接 BF.


- (1) 求证: FB=FD;
- (2) 点 H 在边 BC 上,且 BH=CE, 连接 AH 交 BF 于点 N.
- ①判断 AH 与 BF 的位置关系,并证明你的结论;
- ②连接 CN. 若 AB=2,请直接写出线段 CN长度的最小值.

28.在平面直角坐标系 xOy 中,对于两个点 P, Q 和图形 W,如果在图形 W上存在点 M,N(M,N可以重合)使得 PM=QN,那 Δ 称点 P与点 Q 是图形 W的一对平衡点.

点A(0,3),B(2,3);

①设点 O 与线段 AB 上一点的距离为 d,则 d 的最小值是_____,最大值是_____;

②在 $P(\frac{3}{2}, 0)$, $P_2(1, 4)$, $P_3(-3, 0)$ 这三个点中,与点 O 是线段 AB 的一对平衡点的是

(2)如图 2,已知 $\odot O$ 的半径为 1,点 D 的坐标为(5,0).若点 E(x, 2) 在第一象限,且点 D 与点 E 是 $\odot O$ 的一对平衡点,求 x 的取值范围;

(3)如图 3,已知点 H (-3,0),以点 O 为圆心,OH 长为半径画弧交 x 的正半轴于点 K.点 C (a, b) (其中 $b \ge 0$)是坐标平面内一个动点,且 OC = 5, $\odot C$ 是以点 C 为圆心,半径为 2 的圆,若 HK 上的任意两个点都是 $\odot C$ 的一对平衡点,直接写出 b 的取值范围.

参考答案

一选择题

- 1. A
- 2.D
- 3. *A*
- 4. *C*
- 5. D

- 6. D
- 7. B
- 8. D
- 二、填空题
- 9. $x \ge 3$
- 10. a(x+5)(x-5)
- 11.4

12.4

WWW.9kaozx.c

- 13.110
- 14. ②③

- 15. 1154cosα
- 16.1

- 17. 解: 原式=5+2 $\sqrt{3}$ -2× $\frac{\sqrt{3}}{2}$ -1=5+2 $\sqrt{3}$

$$=5+2\sqrt{3}-\sqrt{3}-1$$

- $=4 + \sqrt{3}$.
- 18. 解: :: x=1 是关于 x 的方程 $x^2-mx-2m^2=0$ 的一个根,
- ∴ $1-m-2m^2=0$.
- $\therefore 2m^2 + m = 1$.
- : $m (2m+1) = 2m^2 + m = 1$.
- 19. 证明: (1) *∵∠ABE=∠ACB*, ∠*A=∠A*,
- $\therefore \triangle ABE \hookrightarrow \triangle ACB;$
- (2) $:: \triangle ABE \hookrightarrow \triangle ACB$,
- $\therefore \frac{AB}{AC} = \frac{AE}{AB},$
- $AB^2 = AC \cdot AE$
- AB=6, AE=4,
- $\therefore AC = \frac{AB^2}{AE} = 9,$
- AB // CD,
- $\therefore \triangle CDE \hookrightarrow \triangle ABE$,
- $\therefore CD = \frac{AB \cdot CE}{AE} = \frac{AB \cdot (AC AE)}{AE}$
- 20. BQ 等弧所对的圆周角相等 内错角相等两直线平行

- 21. 解: (1) 依题意可知, $\triangle = (2k-1)^2 4(k^2-1) = 5-4k$,
- : k < 0,
- $\therefore \triangle > 0.$
- ::方程有两个不相等的实数根.
- (2) 当 k=-1 时,方程为 $x^2+3x=0$.

解得 x_1 =-3, x_2 =0.

- 22. (1) α -45° 45
- (2) 如图 2, $\triangle ADE$ 为所作, BE 与 AC 相交于 G,
- $\therefore \triangle ABC$ 绕点 A 逆时针旋转 45 度得到 $\triangle ADE$,

 $\overrightarrow{\text{m}}$ AB=AC, \angle BAC=45°,

- ∴点 D 与点 C 重合, $\angle CAE=45^{\circ}$,AE=AB=2
- www.gkaoz $\therefore \triangle ABE$ 为等腰直角三角形,
- $\therefore BE = \sqrt{2}AB = 2\sqrt{2}$

而 AG 平分 ∠BAE,

- $AG \perp BE$
- $AG = \frac{1}{2}BE = \sqrt{2}$

即此时点 A 到直线 BE 的距离为 $\sqrt{2}$.

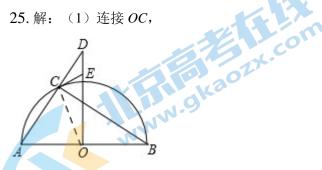
- 23. 解: (1) :直线 l: y=x+b 与 x 轴交于点 A (-2, 0)
- ∴ -2+b=0
- $\therefore b=2$
- : 一次函数解析式为: y=x+2
- ∴直线 *l* 与 *y* 轴交于点 *B* 为 (0, 2)
- ∴点 B 的坐标为 (0, 2);
- (2) : 双曲线 $y = \frac{k}{r}$ 与直线 l 交于 P, Q 两点
- ∴点 P 在直线 l 上
- ∴ 当点 P 的横坐标为 2 时, y=2+2=4
- ∴点 P 的坐标为 (2, 4)

∴ $k=2\times4=8$

$$(3) -1 < k < -\frac{3}{4} \stackrel{5}{\bowtie} \frac{5}{4} < k < 3.$$

24. 解:如图,作 $BD \perp l$ 于点D,

 $\angle CDB=90^{\circ}$, BC=13,

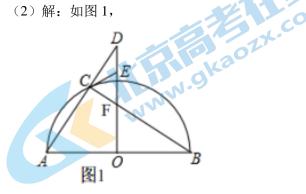

:. $CD = BC \cdot \cos C = 13 \times \frac{5}{13} = 5$, $BD = \sqrt{BC^2 - CD^2} = 12$,

BD=12, $\sin A=\frac{4}{5}$,

$$AB = \frac{BD}{\sin A} = 15$$
, $AD = \frac{BD}{\tan A} = 9$,

9为半径作弧与射线 l 交于点 A, 连接 AB 即可.

25. 解: (1) 连接 *OC*,



:AB 是半圆的直径,AC 是半圆的弦,

- $\therefore \angle ACB = 90^{\circ},$
- ::点 D 在弦 AC 的延长线上,
- $\therefore \angle DCB = 180^{\circ} \angle ACB = 90^{\circ},$
- $\therefore \angle DCE + \angle BCE = 90^{\circ},$
- C = OB,
- $\therefore \angle BCO = \angle B$,
- $\therefore \angle DCE = \angle B$,
- $\therefore \angle BCO + \angle BCE = 90^{\circ}$,

即: ∠*OCE*=90°,

- $\therefore CE \perp OC$
- **:**点 *C* 在半圆上,
- :: CE 是半圆的切线;
- (2)解:如图1,

在 $Rt\triangle ABC$ 中, $tan B=\frac{2}{3}$,

∴k 的值为 8

在 Rt△CBD 中,

 $\therefore \cos C = \cos \alpha = \frac{5}{13},$

在 *Rt△ABD* 中,

 $\therefore \tan A = \frac{4}{3}$,

作图,以点D为圆心,

设 AC=2k,则 BC=3k,根据勾股定理得, $AB=\sqrt{13}k$,

- $\therefore \sin B = \frac{AC}{AB} = \frac{2\sqrt{13}}{13},$
- $: OD \perp AB$,
- $\therefore \angle D + \angle A = 90^{\circ}$,
- :: AB 是半圆的直径,
- $\therefore \angle ACB = 90^{\circ}$,
- $\therefore \angle B + \angle A = 90^{\circ}$,
- $\therefore \angle D = \angle B$,
- $\therefore \sin D = \sin B = \frac{2\sqrt{13}}{13},$

在 $Rt\triangle CDF$ 中, $\sin D = \frac{CF}{DF} = \frac{2\sqrt{13}}{13}$

$$\therefore \cos B = \frac{3\sqrt{13}}{13},$$

设 CF=2m,则 $DF=\sqrt{13}m$,根据勾股定理得, $DF^2-CF^2=CD^2$,

$$\therefore 13m^2-4m^2=100,$$

$$: m = \frac{10}{3}$$
 (舍) 或 $m = \frac{10}{3}$,

$$\therefore CF = \frac{20}{3},$$

在 $Rt\triangle BOF$ 中, $BF=\frac{OB}{cosB}=\frac{13}{6}k$,

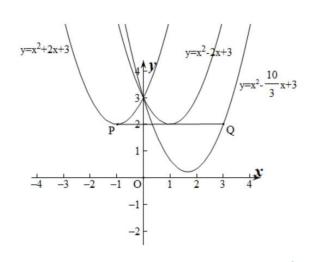
:.BC=BF+CF=
$$\frac{13}{6}k+\frac{20}{3}=3k$$
,

 $\therefore k=8$,

$$\therefore OB = \frac{\sqrt{13}}{2}k = 4\sqrt{13}.$$

26. (1) ①:m=2,

- ∴抛物线为 *y=x*²-2*x*+*n*.
- $x = -\frac{-2}{2} = 1$,
- : 抛物线的对称轴为直线 x=1.
- ∵当线 *x*=1 时, *y*=1-2+*n*=*n*-1,
- ∴顶点的纵坐标为: n-1.
- ② x_2 <-2 或 x_2 >4.
- ②:抛物线的对称轴为直线 x=1, 开口向上,


x=-2 到 x=1 的距离为 3,

∴点 A (-2, y_1), B (x_2 , y_2) 都在抛物线上,且 $y_2>y_1$,则 x_2 的取值范围是 $x_2<-2$ 或 $x_2>4$,

故答案为: $x_2 < -2$ 或 $x_2 > 4$.

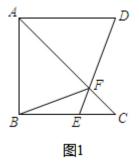
(2): 点 P(-1, 2),向右平移 4 个单位长度,得到点 Q.

∴点 *Q* 的坐标为 (3, 2),

: n=3,

抛物线为 $y=x^2-mx+3$.

当抛物线经过点 Q(3, 2) 时, $2=3^2-3m+3$,解得 $m=\frac{10}{3}$;

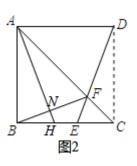

当抛物线经过点 P (-1, 2) 时, 2= (-1) $^2+m+3$, 解得 m=-2;

当抛物线的顶点在线段 PQ 上时, $\frac{12-m^2}{4}$ =2,解得 $m=\pm 2$.

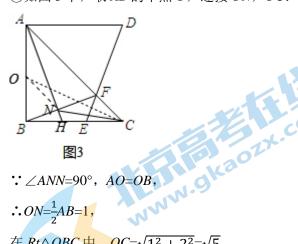
结合图象可知,m的取值范围是 $m \le -2$ 或 m = 2 或 $m > \frac{10}{3}$.

故答案为: $m \le -2$ 或 m = 2 或 $m > \frac{10}{3}$.

27. (1) 证明: 如图 1 中,



- $\therefore BA=BC, \angle ABC=90^{\circ},$
- $\therefore \angle BAC = \angle ACB = 45^{\circ}$,
- :线段 AB 绕点 A 逆时针旋转 90° 得到线段 AD,


- (2) ①解:结论: AH⊥BF.

理由:如图 2中,连接 CD.

- $\therefore \angle ABC + \angle BAD = 180^{\circ},$
- $\therefore AD // BC$,
- AD=AB=BC
- ∴四边形 ABCD 是平行四边形,
- $\therefore \angle ABC = 90^{\circ}$,
- :.四边形 ABCD 是矩形,
- :AB=BC
- :.四边形 ABCD 是正方形,
- $\therefore BA = CD$, $\angle ABH = \angle DCE$, BH = CE,
- $\triangle ABH \cong \triangle DCE (SAS)$,
- $\therefore \angle BAH = \angle CDE$,
- $\therefore \angle FCD = \angle FCB = 45^{\circ}, CF = CF, CD = CB,$
- $\triangle CFD \cong \triangle CFB \ (SAS)$,
- $\therefore \angle CDF = \angle CBF$,
- $\therefore \angle BAH = \angle CBF$,
- $\therefore \angle CBF + \angle ABF = 90^{\circ}$,
- $\therefore \angle BAH + \angle ABF = 90^{\circ}$,
- $\therefore \angle ANB = 90^{\circ}$,
- $\therefore AH \perp BF$.
- ②如图 3 中,取 AB 的中点 O,连接 ON, OC.

- $\therefore \angle ANN=90^{\circ}, AO=OB,$
- $\therefore ON = \frac{1}{2}AB = 1$

在 $Rt\triangle OBC$ 中, $OC=\sqrt{1^2+2^2}=\sqrt{5}$,

 $:CN \ge OC - ON$,

- $\therefore CN \ge \sqrt{5}-1$,
- ∴ CN 的最小值为 $\sqrt{5}$ -1.

28. $3\sqrt{13} P_1$

www.gkaozx.com

www.gkaozx.com

2022 北京各区初三一模试题下载

北京高考资讯公众号整理【**2022 北京各区初三一模试题&答案**】,持续为大家进行分享。 想要下载练习各区各科试题答案,可以扫描下方二维码,进入试题答案汇总下载高清电子版 文件。

扫描二维码进入试题答案汇总 下载电子版试题

还有更多一模成绩、排名等信息,考后持续分享 记得关注我们的公众号【北京高考资讯(ID:bjgkzx)】!

Q 北京高考资讯