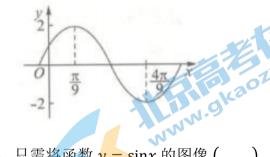

2025届高一下3月月考数学试题

- 1. sin600°的值是(
 - A. $\frac{1}{2}$

B. $-\frac{1}{2}$

- $C.\frac{\sqrt{3}}{2}$
- www.gkaozy D. $-\frac{\sqrt{3}}{2}$
- 2. 已知 P(-3,4) 是角 α 的终边上的点,则 $\sin \alpha = ($

- B. $\frac{3}{5}$
- C. $-\frac{3}{5}$


D. $-\frac{4}{2}$

- 3. 已知 $\alpha = 5 \, rad$,则 α 是()

- A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角

- C. $\frac{5}{12}$

- D. $-\frac{5}{12}$
- 5. 已知函数 $y = A \sin(\omega x + \varphi)$ 在一个周期内的图像如下,当 $x = \frac{\pi}{9}$ 时函数取得 最大值 2, 当 $x = \frac{4\pi}{9}$ 时函数取得最小值 -2, 则该函数的解析式为 (
 - A. $y = 2\sin\left(3x \frac{\pi}{6}\right)$
 - B. $y = 2\sin\left(3x + \frac{\pi}{6}\right)$
 - C. $y = 2\sin\left(\frac{x}{2} + \frac{\pi}{6}\right)$
 - D. $y = 2\sin\left(\frac{x}{2} \frac{\pi}{6}\right)$

- 6. 要得到函数 $y = \sin\left(2x \frac{\pi}{3}\right)$ 的图像,只需将函数 $y = \sin x$ 的图像 (
 - A. 把各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,再向右平移 $\frac{\pi}{6}$ 个单位
 - B. 把各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,再向左平移 $\frac{\pi}{3}$ 单位
 - C. 把各点的横坐标伸长到原来的 2 倍,再向右平移 $\frac{\pi}{6}$ 个单位
 - D. 把各点的横坐标伸长到原来的 2 倍,再向左平移 $\frac{\pi}{3}$ 单位
- 7. 已知扇形的圆心角为 $\frac{2\pi}{3}$,半径为 $\sqrt{3}$,则此扇形的面积为(

Β. π

C. $\frac{\sqrt{3}\pi}{2}$

D. $\frac{2\sqrt{3}\pi}{9}$

上,则
$$\frac{\sin\left(\frac{3\pi}{2}+\theta\right)+\cos(\pi-\theta)}{\sin\left(\frac{\pi}{2}-\theta\right)-\sin(\pi-\theta)}=\left(\qquad\right)$$

A. -2

B. 2

C. 0

D. $\frac{2}{3}$

9. 函数 $y = \cos^2 x + \sin x$ 的最大值为 (

A. 2

B. $\frac{5}{4}$

C. 1

D. 0

10. 已知函数 $f(x) = \sin\left(2x - \frac{\pi}{6}\right)$,则下列四个结论中正确的是 ()

A. 函数 f(x) 的图像关于 $\left(\frac{5\pi}{12},0\right)$ 中心对称

B. 函数 f(x) 的图像关于直线 $x = -\frac{\pi}{8}$ 对称

C. 函数 f(x) 在区间 $(-\pi, \pi)$ 内有 4 个零点

D. 函数 f(x) 在区间 $\left[-\frac{\pi}{2},0\right]$ 上单调递增

11. 若函数 $f(x) = \sin\left(\omega x - \frac{\pi}{4}\right)(\omega > 0)$ 的图像向左平移 $\frac{\pi}{3}$ 个单位后,所得图像 关于原点对称,则 ω 的最小值为 ()

A. $\frac{1}{4}$

B. $\frac{3}{4}$

C. $\frac{7}{4}$

D. $\frac{9}{4}$

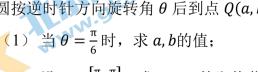
12. 已知函数 $f(x) = \sin(2x + \varphi)$,其中 φ 为实数,若 $f(x) \le |f(\frac{\pi}{6})|$ 对 $x \in \mathbf{R}$ 恒成立,且 $f(\frac{\pi}{2}) > f(\pi)$,则 f(x) 的单调递增区间是 ()

- A. $\left[k\pi \frac{\pi}{3}, k\pi + \frac{\pi}{6}\right] \ (k \in \mathbf{Z})$
- B. $\left[k\pi, \frac{k}{n} + \frac{\pi}{2}\right] \quad (k \in \mathbf{Z})$
- C. $\left[k\pi + \frac{\pi}{6}, k\pi + \frac{2\pi}{3}\right] \ (k \in \mathbf{Z})$
- D. $\left[k\pi \frac{\pi}{2}, k\pi\right] \ (k \in \mathbf{Z})$


二、(共6小题,每题5分,共30分)

13. cos40°cos20° - sin40°sin20°的值等于_____.

14. 若角 $\pi + \alpha$ 的终边上一点的坐标为 (-5,12),则 $\sin\left(\frac{\pi}{2} + \alpha\right) = \underline{\hspace{1cm}}$.


15. 已知 $\tan \alpha = 3$, α 是第三象限角,则 $\cos^2 \alpha - \sin \alpha$ 的值为______.

- 16. 若点 $P(\cos\theta, \sin\theta)$ 与 点 $Q\left(\cos(\theta + \frac{\pi}{3}), \sin(\theta + \frac{\pi}{3})\right)$ 关于直线y = -x对称 ww.gkao2 出一个符合题意的 θ 值为 .
- 17. 如图为大型观览车在直角坐标平面内的示意图. 0 为观览车的轮轴中心,点0距离地面的高度为 $32 \,\mathrm{m}$, 观览车转轮的半径为 30 m, 其逆时针旋转的角速度为 1 rad/s. 点 P_0 表示观览车上某座椅的初始位置,且 $\angle xOP_0 = \frac{\pi}{6}$,此时座椅距地面的高度为_______m;

当转轮逆时针转动 t s 后,点 P_0 到达点 P 的位置,则点 P 的纵坐标 γ 与时 间 t (单位: s) 的函数关系为_____ $(t \ge 0)$.

- 18. 已知函数 $f(x) = \cos\left(2x \frac{\pi}{6}\right)$, 若对于任意的 $x_1 \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, 总存在 $x_2 \in$ [m,n], 使得 $f(x_1) + f(x_2) = 0$, 则 |m-n| 的最小值为 .
- (共4小题; 共60分)
 - 19 (14分) 已知角 α 的顶点与原点 O 重合,始边与 x 轴的正半轴重合, w.gkao² 终边过点 $P\left(-\frac{3}{5},-\frac{4}{5}\right)$.
 - (1) 求 $\sin(\alpha + \pi)$ 的值;
 - (2) 若角 β 满足 $\sin(\alpha + \beta) = \frac{5}{13}$,求 $\cos\beta$ 的值.
 - 20. (14分)如图,在平面直角坐标系 x0v 中, 点 A 为单位圆与 x 轴正半轴的交点,点 P 为 单位圆上的一点,且 $\angle AOP = \frac{\pi}{4}$, 点 P 沿单位 圆按逆时针方向旋转角 θ 后到点 Q(a,b).

(2) 设 $\theta \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, 求 b-a 的取值范围.

- 21(16 分) 已知函数 $f(x) = A\sin\left(\omega x + \frac{\pi}{6}\right)$ (A > 0, $\omega > 0$)只能同时满足下列三个条件中的两个:
 - ① 函数 f(x) 的最大值为 2;
 - ② 函数 f(x) 的图像可由 $y = \sqrt{2}\sin\left(x \frac{\pi}{4}\right)$ 的图<mark>像</mark>平移得到;
 - ③ 函数 f(x) 图像的相邻两条对称轴之间的距离为 $\frac{\pi}{2}$.
 - (1) 请写出这两个条件的序号,并求出 f(x) 的解析式.
 - (2) 求f(x)在区间 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 上的单调**递减**区间.
- (3) 求方程 f(x) + 1 = 0 在区间 [-π, π] 上所有解的和.
- 22(16分) 已知函数 $f(x) = \sqrt{3}\sin 2x + \cos 2x$.
- (1) 求函数 f(x) 在区间 $\left[0,\frac{\pi}{2}\right]$ 上的最大值和最小值;
- (2) 若 $f(x_0) = \frac{8}{5}$, $x_0 \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, 求 $\cos 2x_0$ 的值;
- (3) 若函数 $y = f(\omega x)$ 在区间 $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ 上是单调递增函数,求正数 ω 的取值范围.

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承 "精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

咨询热线: 010-5751 5980

微信客服: gaokzx2018

官方微信公众号: bjgkzx 官方网站: <u>www.gaokzx.com</u>