2019 北京十一中高一(上)期中

数 学

一、选择题(共10小题; 共50分)

- 1. 已知集合 $A = \{1,2,3\}$,则下列可以作为 A 的子集的是 ()
 - A. 1, 2
- B. $\{1, 2, 4\}$
- C. $\{1,4\}$
- D. {1,2
- 2. 设集合 $A = \{1,2,3\}$, $B = \{2,3,4\}$, 则 $A \cup B = \{1,2,3\}$
 - A. $\{1, 2, 3, 4\}$
- B. {1,2,3}
- c. $\{2,3,4\}$
- D. $\{1,3,4\}$

- 3. 函数 $f(x) = \frac{\lambda}{x}$ 的单调递减区间为 ()
 - A. $(-\infty, +\infty)$

- B. $(-\infty, 0) \cup (0, +\infty)$
- C. $(-\infty, 0), (0, +\infty)$
- D. $(0, +\infty)$
- 4. 命题 P: "∀x ∈ ($-\infty$,0), 3^x ≥ 4^x "的否定 $^-$ P 为 ()
 - A. $\forall x \in (-\infty, 0), 3^x < 4^x$

- B. $\forall x \in (-\infty, 0), 3^x \le 4^x$
- C. $\exists x_o \in (-\infty, 0), 3^{x_o} < 4^{x_o}$
- D. $\exists x_0 \in (-\infty, 0), 3^{x_0} < 4^{x_0}$
- 5. 函数 $y = x + \frac{2}{x}(x \ge 0)$ 取得最小值时的自变量 x 等于 (
 - A. $\sqrt{2}$
- B. $2\sqrt{2}$
- G 1
- D. 3
- 6. 函数 $f(x) = x^2 2x + 3$, $x \in [0,3]$ 的值域是 ()
 - A. [3,6]
- B. [2,6]
- C. [2,3]
- D. [0,3]
- 7. 下列函数中,在其定义域内既是奇函数又是减函数的是()

- A. y = 2x + 1 B. $y = -x^2$ C. y = -2x D. $y = (\frac{1}{2})^x$
- 8. 函数 $y = \sqrt{2x-1} (4x-3)^0$ 的定义域为(
 - A. $\left(-\frac{1}{2},\frac{3}{4}\right) \cup \left(\frac{3}{4},+\infty\right)$

C. $(-\infty, \frac{1}{2}]$

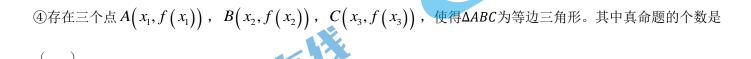
- D. $\left(-\infty, \frac{3}{4}\right) \cup \left(\frac{3}{4}, +\infty\right)$
- 9. $\Im p: \left| x \frac{1}{2} \right| < \frac{1}{2}, q: 2^x \ge 1, \ \, \text{Mpl} \ \, p \not \in q \text{ in }$
 - A. 充分不必要条件

B. 必要不充分条件

- D. 既不充分又不必要条件
- 10. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x) $\begin{cases} 1, x$ 为有理数 称为狄利克雷函数,0, x为无理数

则关于函数 f(x) 有以下四个命题:

- ②函数f(x)是偶函数;
- ③任意一个非零有理数 T, f(x+T)=f(x) 对任意 $x \in R$ 恒成立;

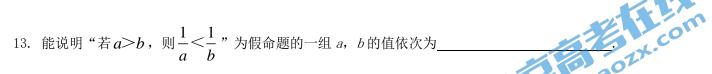


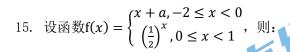
- A. 4

- D. 1

11. \(\psi\)\(\frac{1}{2}\):
$$2^{\frac{1}{2}} + \frac{(-4)^0}{\sqrt{2}} + \frac{1}{\sqrt{2}-1} = \frac{1}{2}$$

12. 不等式 $\frac{2x-1}{x+2}$ < 0 的解集为 _______





$$1)f\left(\frac{1}{2}\right) = \underline{\hspace{1cm}};$$

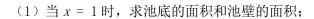
- 16. 已知 $x \in R$,定义: A(x)表示不小于 x的最小整数,如 $A(\sqrt{3}) = 2$, A(-1,2) = -1.

若 A(2x+1)=3,则 x 的取值范围是_____;

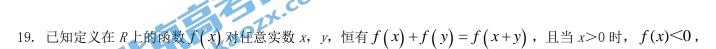
若 x>0 且 $A(2x \cdot A(x)) = 5$,则 x 的取值范围是______.

- 三、解答题(共4小题;共46分)
- 17. 已知不等式 x^2 2x 3<0 的解集为 A,不等式 x^2 + x 6<0 的解集为 B。
 - (1) 求集合 A, 集合 B;

18. 某游泳馆要建造一个容积为 8 立方米,深为 2 米的长方体形状的无盖水池,已知池底和池壁的造价分别是 120 元/平方米和 80 元/平方米,设底面一边的长为 x 米(长方体的容积是长方体的底面积乘以长方体的高)



- (2) 求总造价 y (元) 关于底面一边长 x (米) 的函数解析式;
- (3) 当 x 为何值时,总造价最低,最低造价为多少元?



- (1) 求f(0)的值;
 - (2) 求证: f(x) 为奇函数;
 - (3) 求f(x)在[-3,6]上的最大值与最小值;

- 20. 已知函数 $f(x) = ka^x$ (k 为常数, a > 0 且 $a \ne 1$) 的图象过点 A (0, 1) 和点 B (2, 16)
 - (1) 求函数的解析式;
 - (2) $g(x) = b + \frac{1}{f(x)+1}$ 是奇函数, 求常数 b 的值:
 - (3) 对任意的 $x_1, x_2 \in R$ 且 $x_1 \neq x_2$,试比较 $f(\frac{x_1 + x_2}{2})$ 与 $\frac{f(x_1) + f(x_2)}{2}$ 的大小。

2019 北京十一中高一(上)期中数学参考答案

第一部分

1. D 2. A 3. C 4. C 5. A 6. B 7. C 8. B 9. A 10. A

第二部分

11.
$$2\sqrt{2}+1$$

12.
$$(-2, \frac{1}{2})$$

13. 1,-1 (答案不唯

15.
$$\frac{\sqrt{2}}{2}$$
, $(1,\frac{5}{2}]$

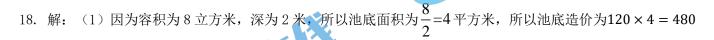
16.
$$\left(\frac{1}{2}, 1\right]$$
, $\left(1, \frac{4}{5}\right]$

第三部分

17. (1)
$$A = \{x \mid -1 \le x \le 3\}$$
, $B = \{x \mid -3 \le x \le 2\}$

(2)
$$C_R A = \{x | x \le -1 \text{ if } x \ge 3\}$$
 $C_R A \cap B = \{x | -3 < x \le -1\}$

$$C_R A \cap B = \{x \mid -3 < x \le -1\}$$



底面积为4平方米,所以另一边长为一米。 元。因为深为2米,底面一边长

 $\frac{4}{x} \times 2 = 4x + \frac{16}{x}$, $\therefore y = 80 \times \left(4x + \frac{16}{x}\right) + 480 = 320x + \frac{1280}{x} + 480, (x > 0)$;

(2) 由 (1) 知,
$$y = 320x + \frac{1280}{x} + 480, (x \ge 0)$$
,所以 $y = 320x + \frac{1280}{x} + 480 \ge 2\sqrt{320x \cdot \frac{1280}{x}} + 480 = 2\sqrt{320x \cdot \frac{1280}{x}}$

1760, 当且仅当 $320x = \frac{1280}{x}$,即 x = 2 > 0时,取得最小值 1760, .. 当x = 2 时,总造价最低,最低造价为 1760

元。

19. (1) 令
$$x = y = 0$$
,可得 $f(0) + f(0) = f(0+0) = f(0)$,从而, $f(0) = 0$.

(2) 令
$$y = -x$$
, 可得 $f(x) + f(-x) = f(x - x) = f(0) = 0$. 即 $f(-x) = -f(x)$, 故 $f(x)$ 为奇函数。

(3) 对任意
$$x_1, x_2 \in R$$
,且 $x_1 > x_2$,则 $x_1 - x_2 > 0$,于是 $f(x_1 - x_2) < 0$.

$$f(x_1) - f(x_2) = f[(x_1 - x_2) + x_2] - f(x_2) = f(x_1 - x_2) + f(x_2), \text{ Mff } f(x_2) = f(x_1 - x_2) < 0.$$

所以 f(x) 在 R 上为减函数,所求函数的最大值为 f(-3) ,最小值为 f(6) 。

因为
$$f(-3) = -f(3) = -[f(2) + f(1)] = -[2f(1) + f(1)] = -3f(1) = 2$$

$$f(6) = -f(-6) = -[f(-3) + f(-3)] = -4$$
,所以 $f(x)$ 在 $[-3,6]$ 上的最大值为 2,最小值为 - 4。

20. (1) 将
$$A$$
 (0,1) 和点 B (2,16) 代入 $f(x)$ 得 $\begin{cases} k=1 \\ k \cdot a^2 = 16 \end{cases}$ 解 $\begin{cases} k=1 \\ a=4 \end{cases}$ 故 $f(x) = 4^x$

(2) 由 (1) 得
$$g(x) = b + \frac{1}{4^x + 1}$$
,若 $g(x)$ 是奇函数,则 $g(-x) = b + \frac{1}{4^{-x} + 1} = b + \frac{4^x}{4^x + 1} = -b - \frac{1}{4^x + 1}$,解

得 $b=-\frac{1}{2}$ 。

(3) 因为
$$f(x)$$
的图象是凹函数,所以 $f(\frac{x_1+x_2}{2}) = \frac{f(x_1)+f(x_2)}{2}$

证明如下:

$$f\left(\frac{x_1+x_2}{2}\right) = 4^{\frac{x_1+x_2}{2}}, \quad \frac{f\left(x_1\right)+f\left(x_2\right)}{2} = \frac{4^{x_1}+4^{x_2}}{2} > \frac{2\sqrt{4^{x_1+x_2}}}{2} = 4^{\frac{x_1+x_2}{2}}, \quad \text{if} f\left(\frac{x_1+x_2}{2}\right) < \frac{f(x_1)+f(x_2)}{2}.$$