2022 北京东城高三二模

数 学

NW.9kao1 本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束 后,将本试卷和答题卡一并交回.

第一部分(选择题共40分)

一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.

- (1) 已知集合 $U = \mathbf{R}, A = \{x | x2 2x 3 < 0\}$, 则 $\mathbb{C}_{U}A = \{x | x2 2x 3 < 0\}$

 $(B) \left\{ x \middle| -1 \le x \le 3 \right\}$

(C) $\{x \mid x-1$ 或 $x \ge 3\}$

- $(D) \left\{ x \middle| x < -1 \overrightarrow{\boxtimes} x > 3 \right\}$
- (2) 已知 $a = \log_1 3, b = \ln \pi, c = e^{-\frac{1}{2}}$,则 a, b, c 的大小关系为
- (A) b > c > a

(B) b > a > c

(C) c > b > a

- (D) c > a > b
- (3) 在 $(1-2x)^5$ 的展开式中,第4项的系数为
- (A) -80

- (B) 80
- (D) 10
- (4) 将函数 $y = \cos(2x \frac{\pi}{2})$ 的图象向左平移 $\frac{\pi}{2}$ 个单位长度后,所得图象对应的函数为
- (A) $y = \sin 2x$

(C) $y = \cos 2x$

- (D) $y = -\cos 2x$
- (5) 《周髀算经》中对圆周率 π有"径一而周三"的记载. 已知圆周率 π小数点后 20 位数字分别为 14159 26535 897<mark>93</mark> 23846. 若从这 20 个数字的前 10 个数字和后 10 个数字中各随机抽取一个数字,则这两个数字均 为奇数的概率为

 $(A) \frac{3}{5}$

- (B) $\frac{33}{95}$ (C) $\frac{21}{100}$
- (D) $\frac{7}{20}$
- (6) 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 , P 为 C 右支上一点. 若 C 的

渐近线方程为3x + 4y = 0,则 $\frac{|F_1F_2|}{|PF_2| - |PF_1|} =$

(A) $-\frac{5}{3}$

- (B) $\frac{5}{3}$

- (7) 已知 $\alpha, \beta \in \mathbf{R}$,则" $\sin(\alpha + \beta) = \sin 2\alpha$ "是" $\beta = \alpha + 2k\pi (k \in \mathbf{Z})$ "的
- (A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- (8) 已知点 $P(\cos\theta,\sin\theta)$ 在直线 ax-y+3=0 上,则当 θ 变化时,实数 a 的范围为
- (A) $[-2\sqrt{2}, 2\sqrt{2}]$

(B) $(-\infty, -2\sqrt{2}] \cup [2\sqrt{2}, +\infty)$

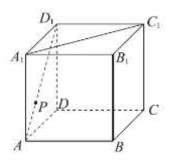
(C) $\begin{bmatrix} -3,3 \end{bmatrix}$

- (D) $(-\infty, -3] \cup [3, +\infty)$
- (9) 已知等差数列 $\left\{a_{n}\right\}$ 与等比数列 $\left\{b_{n}\right\}$ 的首项均为-3,且 $a_{3}=1,a_{4}=8b_{4}$,则数列 $\left\{a_{n}b_{n}\right\}$
- (A) 有最大项,有最小项

(B) 有最大项, 无最小项

(C) 无最大项,有最小项

- (D) 无最大项, 无最小项
- (10) 如图,已知正方体 $ABCD^-A_lB_lC_lD_l$ 的棱长为 1,则线段 AD_l 上的<mark>动</mark>点 P 到直线 A_lC_l 的距离的最小值为
- (A) 1



N. 9kao

第二部分(非选择题共 110 分)

- 二、填空题共5小题,每小题5分,共25分.
 - (11) 已知复数z满足(1-i)z = 3 + i,则 $z = ____; |z| = ____.$

- (12) 已知向量a,b,c满足a+b+c=0,且 $|a|=1,a\cdot b=0$,则 $a\cdot c=$ _____.
- (13) 已知抛物线 $C: y^2 = 2px(p>0)$,P 为 C 上一点, $PQ \bot x$ 轴,垂足为Q,F 为C 的焦点,O 为原点.若 $\angle POQ = 45^\circ$,则 $\cos \angle PFQ =$ ______.
- (14)已知奇函数 f(x) 的定义域为 \mathbf{R} ,且 $\frac{f'(x)}{x^2-1}>0$,则 f(x) 的单调递减区间为______. 满足以上条件的一个函数是______.
- (15)某公司通过统计分析发现,工人工作效率 E 与工作年限 r(r>0),劳累程度 T(0<T<1),劳动动机 b(1<b<5) 相关,并建立了数学模型 $E=10-10T\cdot b^{-0.14r}$.已知甲、乙为该公司的员工,给出下列四个结论:
- ①甲与乙劳动动机相同,且甲比乙工作年限长,劳累程度弱,则甲比乙工作效率高;
- ②甲与乙劳累程度相同,且甲比乙工作年限长,劳动动机高,则甲比乙工作效率高;
- ③甲与乙工作年限相同,且甲比乙工作效率高,劳动动机低,则甲比乙劳累程度强;
- ④甲与乙劳动动机相同,且甲比乙工作效率高,工作年限短,则甲比乙劳累程度弱

其中所有正确结论的序号是 .

- 三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.
- (16) (本小题 13分)

在 $\triangle ABC$ 中, $a\cos B + b\cos A = \sqrt{2}c\cos C$.

- (I) 求 $\angle C$;
- (II) 从条件①、条件②、条件③这三个条件中选择一个作为已知,使得 $\triangle ABC$ 存在且唯一确定,求c 和 $\sin A$ 的信.

条件①: $a = 2\sqrt{2}$, AC 边上中线的长为 $\sqrt{5}$

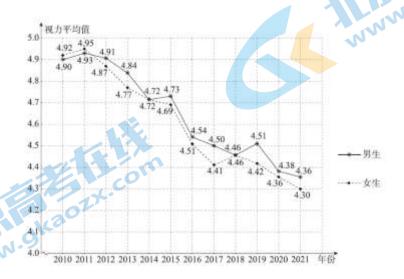
条件②:b=6, $\triangle ABC$ 的面积为 6:

条件③: $\cos B = -\frac{\sqrt{10}}{10}$, AC 边上的高 BD 的长为 2.

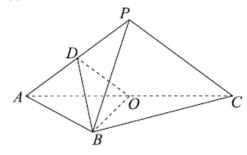
注:如果选<mark>择的条</mark>件不符合要求,第(II)问得 0 分;如果选择多个符合要求的条件分别解答,按第一个解答计分.

(17) (本小题 13分)

某部门为了解青少年视力发展状况,从全市体检数据中,随机抽取了 100 名男生和 100 名女生的视力数据,分别计算出男生和女生从小学一年级(2010 年)到高中三年级(2021 年)每年的视力平均值,如下图所示。



- (I)从 2011年到 2021年中随机选取 1年,求该年男生的视力平均值高于上一年男生的视力平均值的概率;
- (II) 从 2010 年到 2021 年这 12 年中随机选取 2 年,设其中恰有 X 年女生的视力平均值不低于当年男生的视力平均值,求 X 的分布列和数学期望;
- (III) 由图判断,这 200 名学生的视力平均值从哪年开始连续三年的方差最小? (结论不要求证明)
- (I) 设平面 $PBC \cap \text{平面 } BOD = l$, 判断直线 l = PC 的位置关系, 并证明;
- (II) 求直线 PB 与平面 BOD 所成角的正弦值.



- (19) (本小题 15 分) 已知 $f(x) = x + \frac{2a^2}{x} + a \ln x (a \in \mathbf{R})$.
- (I) 当 a = 1 时,求曲线 y = f(x) 在点(1, f(1)) 处的切线方程;
- (II) 当 $x \in [e, +\infty)$ 时,曲线y = f(x)在x轴的上方,求实数a的取值范围.
- (20) (本小题 15分)

已知椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的右顶点为A(2,0),离心率为 $\frac{1}{2}$. 过点P(6,0)与x轴不重合的直线l交椭 圆 E 于不同的两点 B, C, 直线 AB, AC 分别交直线 x = 6 于点 M, N.

www.9kao2

- (I) 求椭圆E的方程;
- (II) 设O为原点,求证: $\angle PAN + \angle POM = 90^{\circ}$.
- (21) (本小题 15分)

对于数列 $A: a_1, a_2, \cdots, a_n (n \ge 3)$,定义变换T, T 将数列 A 变换成数列 $T(A): a_2, a_3, \cdots, a_n, a_1$,

- (II) 对于任意给定的正整数 $n(n \ge 3)$,是否存在 \Re_n 数列 A ,使得 AT(A) = n-3 ?若存在,写出一个数列 A, 若不存在, 说明理由;
- (III) 若 \mathfrak{R}_n 数列A满足 $T^k(A) \cdot T^{k+1}(A) = n 4(k = 1, 2, \dots, n-2)$, 求数列A的个数.

(考生务必将答案答在答题卡上,在试卷上作答无效)

参考答案

- 、选择题(共10小题,每小题4分,共40分)
 - (1) C
- (2) A
- (4) B
- (5) D

- (6) C
- (7) B (8) B
- (9) A
- (10) D

www.gkaozx.

- 二、填空题(共5小题,每小题5分,共25分)
 - $(11) 1 + 2i \sqrt{5}$ (12) -1

- $(13) \frac{3}{5}$
- (14) (-1,1) $f(x) = x^3 3x$ (答案不唯一)

(15) 124

- 三、解答题(共6小题,共85分)
 - (16) (共13分)
- 解: (I) 在 ΔABC 中, 因为 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,

所以 $\sin A \cos B + \sin B \cos A = \sqrt{2} \sin C \cos C$.

所以 $\sin(A+B) = \sqrt{2}\sin C\cos C$,即 $\sin C = \sqrt{2}\sin C\cos C$.

因为 $\sin C \neq 0$,所以 $\cos C = \frac{\sqrt{2}}{2}$.

所以
$$\angle C = \frac{\pi}{4}$$
......6分

(II) 选择条件②:

在
$$\triangle ABC$$
 中, $S_{\triangle ABC} = \frac{1}{2}ab\sin C = \frac{1}{2} \times a \times 6 \times \frac{\sqrt{2}}{2} = 6$,

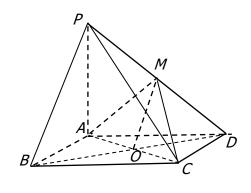
解得
$$a = 2\sqrt{2}$$
.

所以
$$c^2 = a^2 + b^2 - 2ab\cos C = 8 + 36 - 2 \times 2\sqrt{2} \times 6 \times \frac{\sqrt{2}}{2} = 20$$
.

解得
$$c = 2\sqrt{5}$$
.

在 Δ*ABC* 中, 因为
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
 ,

所以
$$\sin B = \frac{3\sqrt{10}}{10}$$
.



WWW.9kaozx

在 ΔABC 中,

$$\sin A = \sin(B+C) = \sin B \cos C + \cos B \sin C = \frac{3\sqrt{10}}{10} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{10}}{10} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{5}}{5}.$$

- (17) (共13分)
- gkaozx (I) 由图可知,从 2011年到 2021年这 11年中,2011年、2015年和 2019年男生的视 解: 力平均值高于上一年男生的视力平均值.

因此,从2011年到2021年中随机选取1年,该年男生的视力平均值高于上一年男

(II) 在这 12 年中,2010 年、2011 年、2014 年、2018 年女生的视力平均值不低于当年 男生的视力平均值.

X的所有可能取值为0, 1, 2.

$$P(X=0) = \frac{C_8^2}{C_{12}^2} = \frac{14}{33}$$
,

$$P(X=1) = \frac{C_4^1 C_8^1}{C_{12}^2} = \frac{16}{33},$$

$$P(X=2) = \frac{C_4^2}{C_{12}^2} = \frac{1}{11}$$
,

所以X的分布列为

X	0	1	2
P	$\frac{14}{33}$	$\frac{16}{33}$	1 11

故 *X* 的数学期望 $E(X) = 0 \times \frac{6}{11} + 1 \times \frac{9}{22} + 2 \times \frac{1}{22} = \frac{2}{3}$

- (III) 这 200 名学生的视力平均值从 2017 年开始连续三年的方差最小......13 分
- (18) (共14分)
 - 解: (I) 直线l//PC, 证明如下:

因为D, O分别为PA, AC中点,

所以 DO // PC.

又因为DO \subset 平面BOD, PC \subset 平面BOD,

所以PC//平面BOD.

因为PC \subset 平面PBC, 平面PBC \cap 平面BOD = l,

所以*l* // PC5分

(Ⅱ) 连结 PO.

因为PA = PC, O为AC中点,

所以 $PO \perp AC$.

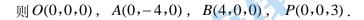
因为平面 PAC 上平面 ABC,

所以PO 上平面ABC.

所以 $PO \perp OB$.

因为AB = BC, 所以 $OB \perp AC$.

如图,建立空间直角坐标系O-xyz,



因为点 D 为 PA 中点,所以 $D(0,-2,\frac{3}{2})$.

所以
$$\overrightarrow{OD} = (0, -2, \frac{3}{2})$$
, $\overrightarrow{OB} = (4, 0, 0)$.

设n = (x, y, z)为平面BOD的法向量,

$$\operatorname{Exp} \begin{cases} \boldsymbol{n} \cdot \overrightarrow{OB} = 0, \\ \boldsymbol{n} \cdot \overrightarrow{OD} = 0, \end{cases} = 0 \begin{cases} 4x = 0, \\ -2y + \frac{3}{2}z = 0. \end{cases}$$

令 z = 4 , 则 x = 0 , y = 3 , 可得 n = (0,3,4) .

设直线 PB 与平面 BOD 所成角为 α ,

因为 $\overrightarrow{PB} = (4,0,-3)$,

所以
$$\sin \alpha = \left|\cos < \overrightarrow{PB}, n > \right| = \frac{\left|\overrightarrow{PB} \cdot n\right|}{\left|\overrightarrow{PB}\right| \cdot |n|} = \frac{12}{25}.$$

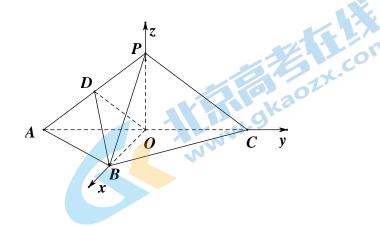
(19) (共15分)

解:函数 f(x) 的定义域为 $(0,+\infty)$.

(I)
$$\stackrel{\text{def}}{=} a = 1 \text{ fr}, \quad f(x) = x + \frac{2}{x} + \ln x, \quad f'(x) = 1 - \frac{2}{x^2} + \frac{1}{x}.$$

所以 f(1) = 3, f'(1) = 0.

(II) 当 $a \ge 0$ 时,由 $x \in [e, +\infty)$ 有 f(x) > 0,故曲线 y = f(x) 在 x 轴的上方.



令 f'(x) = 0 得 x = -2a 或 x = a (舍去).

当x变化时,f'(x),f(x)变化情况如下:

х	(0,-2a)	-2 <i>a</i>	$(-2a, +\infty)$
f'(x)	_	0	+
f(x)	`		1

当 $-2a \le e$,即 $-\frac{e}{2} \le a < 0$ 时,f(x)在区间 $[e,+\infty)$ 上单调递增,

则
$$f(x) \ge f(e) = \frac{2}{e}a^2 + a + e = \frac{2}{e}(a + \frac{e}{4})^2 + \frac{7}{8}e > 0$$
,

即曲线 y = f(x) 在 x 轴的上方.

当
$$-2a > e$$
,即 $a < -\frac{e}{2}$ 时,

f(x)在区间[e,-2a)上单调递减,在区间 $(-2a,+\infty)$ 上单调递增,

$$\iiint f(x) \ge f(-2a) = -3a + a \ln(-2a).$$

曲x ∈ [e,+∞)时,曲线y = f(x) 在x 轴的上方,

有
$$-3a+a\ln(-2a)>0$$
,解得 $a>-\frac{e^3}{2}$.

所以
$$-\frac{e^3}{2} < a < -\frac{e}{2}$$
.

综上, 实数 a 的取值范围为 $\left(-\frac{e^3}{2}, +\infty\right)$15 分

(20) (共15分)

解: (I) 由题设,知
$$\begin{cases} a=2, \\ \frac{c}{a} = \frac{1}{2}, \\ a^2 = b^2 + c^2, \end{cases}$$
 解得 $a^2 = 4$, $b^2 = 3$.

(II) 由题设知直线 l 的斜率存在,设直线 l 的方程为 $y = k(x-6)(k \neq 0)$.

由
$$\begin{cases} y = k(x-6), \\ \frac{x^2}{4} + \frac{y^2}{3} = 1, \end{cases}$$
 消去 y , 得 $(4k^2 + 3)x^2 - 48k^2x + 144k^2 - 12 = 0$.

由 $\Delta = (-48k^2)^2 - 4(4k^2 + 3)(144k^2 - 12) > 0$ 及 $k \neq 0$, 解得 k 的取值范围为 $(-\frac{\sqrt{6}}{8}, 0) \cup (0, \frac{\sqrt{6}}{8})$.

设
$$B(x_1, y_1), C(x_2, y_2)$$
,则 $x_1 + x_2 = \frac{48k^2}{4k^2 + 3}$, $x_1 x_2 = \frac{144k^2 - 12}{4k^2 + 3}$.

直线 $AB: y = \frac{y_1}{x_1 - 2}(x - 2)$, 令 x = 6 , 得 $y = \frac{4y_1}{x_1 - 2}$,

点
$$M(6, \frac{4y_1}{x_1-2})$$
.

同理,点
$$N(6, \frac{4y_2}{x_2-2})$$
.

由题设知, $\tan \angle PAN = \frac{\left|\frac{4y_1}{x_1 - 2}\right|}{4}$, $\tan \angle PMO = \frac{6}{\left|\frac{4y_2}{x_2 - 2}\right|}$

因为
$$\frac{4y_1}{x_1-2} \cdot \frac{4y_2}{x_2-2} = \frac{16k^2(x_1-6)(x_2-6)}{(x_1-2)(x_2-2)}$$

$$= \frac{16k^2[x_1x_2 - 6(x_1 + x_2) + 36]}{x_1x_2 - 2(x_1 + x_2) + 4}$$

$$= \frac{16k^2 \cdot (\frac{144k^2 - 12}{4k^2 + 3} - 6 \times \frac{48k^2}{4k^2 + 3} + 36)}{\frac{144k^2 - 12}{4k^2 + 3} - 2 \times \frac{48k^2}{4k^2 + 3} + 4}$$

NWW.9kaoZ

$$= 24$$

所以
$$\tan \angle PAN = \tan \angle PMO$$
,且 $\frac{4y_1}{x_1 - 2}$ 与 $\frac{4y_2}{x_2 - 2}$ 同号.

依题意, 得 $\angle PAN = \angle PMO$, 且点M, N 位于x 轴同侧.

因为 $\angle PMO + \angle POM = 90^{\circ}$,

所以 ∠*PAN* + ∠*POM* = 90°.15 分

(21) (共15分)

解: (I) 由于 A: -1, -1, 1, -1, 1, 1,

可得*T(A)*: -1, 1, -1, 1, 1, -1.

$$T^{2}(A)$$
: 1, -1, 1, -1, -1.

(II)
$$A \cdot T(A) = a_1 a_2 + a_2 a_3 + \dots + a_n a_1$$
.

因为列A为 \Re_n 数列,所以 $a_i \in \{-1,1\}(i=1,2,\dots,n)$.

对于数列 A: a_1 , a_2 , \cdots , a_n 中相邻的两项 a_i , a_{i+1} $(i=1,2,\cdots,n)$,

$$\diamondsuit a_{n+1} = a_1.$$

若
$$a_i = a_{i+1}$$
,则 $a_i a_{i+1} = 1$;若 $a_i \neq a_{i+1}$,则 $a_i a_{i+1} = -1$.

记
$$a_i a_{i+1} (i=1,2,\dots,n)$$
中有 t 个 -1 , $n-t$ 个 1 ,则 $A \cdot T(A) = n-2t$.

因为n-2t与n的奇偶性相同,而n-3与n的奇偶性不同,

因此不存在符合题意的数列 A 9 分

(III) 首先证明 $A \cdot T(A) = T^{k}(A) \cdot T^{k+1}(A)(k = 1, 2, \dots, n-2)$.

对于数列 A: a_1 , a_2 , …, a_n , 有 T(A): a_2 , …, a_n , a_1 .

 $T^{k}(A)$: a_{k+1} , a_{k+2} ,..., a_{n-1} , a_{n} , a_{1} , a_{2} ,..., a_{k-1} , a_{k} .

 $T^{k+1}(A)$: a_{k+2} , a_{k+3} ,..., a_{n-1} , a_n , a_1 , a_2 ,..., a_k , a_{k+1} .

因为 $A \cdot T(A) = a_1 a_2 + a_2 a_3 + \cdots + a_n a_1$,

www.9kaoz $T^{k}(A) \cdot T^{k+1}(A) = a_{k+1}a_{k+2} + a_{k+2}a_{k+3} + \dots + a_{n}a_{1} + a_{1}a_{2} + a_{2}a_{3} + \dots + a_{k}a_{k}$

所以 $A \cdot T(A) = T^k(A) \cdot T^{k+1}(A)$.

所以 $A \cdot T(A) = n - 4$.

其次,由数列 A 为 \Re_n 数列知 $A \cdot T(A) = n - 2t = n - 4$,解得 t = 2.

这说明数列 A 中的任意相邻的两项不同的情况有 2 次,

也就是数列 A 中所有的 -1 相邻, 所有的1也相邻.

若数列 A 中 -1 的个数为 $m(m=1,2,\dots,n-1)$ 个, 此时数列 A 有 n 个,

2022 北京高三各区二模试题下载

北京高考资讯公众号搜集整理了【2022 北京各区高三二模试题&答案】,想要获取试题资 料,关注公众号,点击菜单栏【一模二模】→【二模试题】,即可免费获取全部二模试题及 答案, 欢迎大家下载练习!

还有更多二模成绩、排名、赋分等信息,考后持续分享!

治 微信搜一搜

Q 北京高考资讯

